Progress in Urban Metabolism Research

  • Chapter
  • First Online:
Urban Metabolism
  • 245 Accesses

Abstract

As shown in Chapter 1, the flows of materials and energy through cities, and the associated growth and development, are analogous to those in an organism or an ecosystem, and this suggests that it is feasible to study urban metabolism using the same tools. Although information also flows within the system, these flows have not been well studied, and for the most part, they will not be discussed in this book. By examining these flows, it is possible to identify the key processes (e.g., ones that either constrain growth or represent inefficient resource use) and define the rules that govern growth and development. Understanding these rules enables urban planners and managers to adjust a city’s operations to improve its vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudelo-Vera CM, Mels A, Keesman K et al (2012) The urban harvest approach as an aid for sustainable urban resource planning. J Ind Ecol 16(6):839–850

    Article  Google Scholar 

  • Baccini P (1996) Understanding regional metabolism for a sustainable development of urban systems. Environ Sci Pollut Res 3(2):108–111

    Article  CAS  Google Scholar 

  • Baccini P (1997) A city’s metabolism: towards the sustainable development of urban systems. J Urban Technol 4(2):27–39

    Article  Google Scholar 

  • Baccini P, Bader HP (1996) Regionaler Stoffhaushalt: Erfassung, Bewertung und Steuerung. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Springer Verlag, Berlin

    Book  Google Scholar 

  • Bai X (2007) Industrial ecology and the global impact of cities. J Ind Ecol 11(2):1–6

    Article  Google Scholar 

  • Baker L, Hartzheim P, Hobbie S et al (2007) Effect of consumption choices on fluxes of carbon, nitrogen and phosphorus through households. Urban Ecosyst 10(2):97–117

    Article  Google Scholar 

  • Barles S (2007) Feeding the city: food consumption and flow of nitrogen, Paris, 1801–1914. Sci Total Environ 375(1–3):48–58

    Article  CAS  Google Scholar 

  • Barles S (2009) Urban metabolism of Paris and its region. J Ind Ecol 13(6):898–913

    Article  Google Scholar 

  • Barles S (2010) Society, energy and materials: the contribution of urban metabolism studies to sustainable urban development issues. J Environ Planning Manage 53(4):439–455

    Article  Google Scholar 

  • Barrett J, Scott A (2001) An ecological footprint of Liverpool: a detailed examination of ecological sustainability (2001-2-1) [2022-7-28]. http://www.gdrc.org/uem/footprints/LiverpoolEFReport.PDF

  • Barrett J, Vallack H, Jones A et al (2002) A material flow analysis and ecological footprint of York. Stockholm Environment Institute, Stockholm, Sweden [2022-5-10]. https://www.researchgate.net/profile/Gary_Haq/publication/257494298_A_Material_Flow_Analysis_and_Ecological_Footprint_of_York/links/02e7e525555fbc95ab000000/A-Material-Flow-Analysis-and-Ecological-Footprint-of-York.pdf?origin=publication_detail

  • Beatley T (2012) Introduction: why study European cities. In: Beatley T (ed) Green cities of Europe: global lessons on green urbanism. Island Press, London, pp 1–28

    Chapter  Google Scholar 

  • Beck MB, Walker RV, Thompson M (2013) Smarter urban metabolism: earth systems re-engineering. ICE Proc: Eng Sustain 166(5):229–241

    Google Scholar 

  • Billen G, Barles S, Garnier J et al (2009) The food-print of Paris: long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Reg Environ Change 9(1):13–24

    Article  Google Scholar 

  • Billen G, Barles S, Chatzimpiros P et al (2012a) Grain, meat and vegetables to feed Paris: where did and do they come from? Localising Paris food supply areas from the eighteenth to the twenty-first century. Reg Environ Change 12(2):325–335

    Article  Google Scholar 

  • Billen G, Garnier J, Barles S (2012b) History of the urban environmental imprint: introduction to a multidisciplinary approach to the long-term relationships between Western cities and their hinterland. Reg Environ Change 12(2):249–253

    Article  Google Scholar 

  • Bohle HG (1994) Metropolitan food systems in develo** countries: the perspective of urban metabolism. GeoJournal 34(3):245–251

    Article  Google Scholar 

  • Bonnes M, Carrus G, Bonaiuto M et al (2004) Inhabitants’ environmental perceptions in the city of Rome within the framework for urban biosphere reserves of the UNESCO programme on man and biosphere. Ann N Y Acad Sci 1023(1):175–186

    Article  Google Scholar 

  • Bornkamm R (1987) Allochthonous ecosystems. Landscape Ecol 1(2):119–122

    Article  Google Scholar 

  • Boyden S, Millar S, Newcombe K et al (1981) The ecology of a city and its people: the case of Hong Kong. Australian National University Press, Canberra, Australia

    Google Scholar 

  • Brattebø H, Bergsdal H, Sandberg NH et al (2009) Exploring built environment stock metabolism and sustainability using systems analysis approaches. Build Res Inf 37(5–6):569–582

    Article  Google Scholar 

  • Bringezu S, van de Sand I, Schütz H et al (2009) Analysing global resource use of national and regional economies across various levels. In: Stefan B, Raimund B (eds) Sustainable resource management: global trends, visions and policies. Greenleaf Publishing, Sheffield, UK, pp 10–51

    Chapter  Google Scholar 

  • Broto VC, Allen A, Rapoport E (2012) Interdisciplinary perspectives on urban metabolism. J Ind Ecol 16(6):851–861

    Article  Google Scholar 

  • Brunner PH (2007) Resha** urban metabolism. J Ind Ecol 11(2):11–13

    Article  Google Scholar 

  • Celecia J (2000) UNESCO’s Man and the Biosphere (MAB) programme and urban ecosystem research: a brief overview of the evolution and challenges of three-decade international experience. First Meeting of the Ad Hoc Working Group to Explore Applications of the Biosphere Reserve Concept to Urban Areas and Their Hinterlands, Paris

    Google Scholar 

  • Chambers N, Heap R, Jenkin N et al (2002) City limits: a resource flow and ecological footprint analysis of Greater London [2022-7-28]. https://library.uniteddiversity.coop/Measuring_Progress_and_Eco_Footprinting/Ecological_Footprinting/City%20Limits%20London.pdf

  • Chatzimpiros P, Barles S (2009) Quantitative water footprint of meat consumption in historical perspective: first results for Paris (France), 1817 and 1906. In: Havránek M (ed) ConAccount 2008: urban metabolism, measuring the ecological city. Charles University Environment Center, Prague, Czech Republic, pp 215–239

    Google Scholar 

  • Chen SQ, Chen B (2012) Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. Environ Sci Technol 46(8):4498–4506

    Article  CAS  Google Scholar 

  • Chen Y, Chen CM, Hu ZG et al (2015) Principles and applications of analyzing a citation space. Science Press, Bei**g, China (in Chinese)

    Google Scholar 

  • Chrysoulakis N (2008) Urban metabolism and resource optimisation in the urban fabric: the BRIDGE methodology. Proceedings of EnviroInfo 2008: Environmental Informatics and Industrial Ecology, Aachen, Germany

    Google Scholar 

  • Chrysoulakis N, Vogt R, Young D et al. (2009) ICT for urban metabolism: the case of BRIDGE. In: Wohlgemuth K, Page B, Voigt K (eds) Proceedings of EnviroInfo 2009: environmental informatics and industrial environmental protection: concepts, methods and tools. Hochschulefür Technik und Wirtschaft, Berlin, Germany, pp 175–185

    Google Scholar 

  • Codoban N, Kennedy CA (2008) Metabolism of neighborhoods. J Urban Plan Dev 134(1):21–31

    Article  Google Scholar 

  • Collins A, Flynn A, Netherwood A (2005) Reducing Cardiff’s ecological footprint: a resource accounting tool for sustainable consumption. Cardiff University, Cardiff, UK

    Google Scholar 

  • Daniels PL, Moore S (2001) Approaches for quantifying the metabolism of physical economies, Part I: methodological overview. J Ind Ecol 5(4):69–93

    Article  Google Scholar 

  • Decker EH, Elliott S, Smith FA et al (2000) Energy and material flow through the urban ecosystem. Annu Rev Energy Env 25(1):685–740

    Article  Google Scholar 

  • Deilmann C (2009) Urban metabolism and the surface of the city. In: Deilmann C (ed) Guiding principles for spatial development in Germany. Springer, Berlin, Germany, pp 1–16

    Google Scholar 

  • Douglas I (1981) The city as ecosystem. Prog Phys Geogr 5(3):315–367

    Article  Google Scholar 

  • Douglas I (1983) The urban environment. Edward Arnold, London, UK

    Google Scholar 

  • Douglas I, Hodgson R, Lawson N (2002) Industry, environment and health through 200 years in Manchester. Ecol Econ 41(2):235–255

    Article  Google Scholar 

  • Doxiadis CA (1970) The science of human settlements. Science 170(3956):393–404

    Article  CAS  Google Scholar 

  • Duvigneaud P, Denayeyer-De Smet S (1977) L’ecosystéme Urbain Bruxellois. Productivité en Belgique, Brussels, Belgium

    Google Scholar 

  • Engel-Yan J, Kennedy C, Saiz S et al (2005) Toward sustainable neighbourhoods: the need to consider infrastructure interactions. Can J Civ Eng 32(1):45–57

    Article  Google Scholar 

  • Eurostat (2009) Economy wide material flow accounts: compilation guidelines for reporting to the 2009 Eurostat questionnaire. EUROSTAT, Luxembourg (2009-6-1) [2022-3-12]. https://unstats.un.org/unsd/envaccounting/ceea/archive/Framework/Eurostat%20MFA%20compilation%20guide_2009.pdf

  • Fath BD, Killian MC (2007) The relevance of ecological pyramids in community assemblages. Ecol Model 208(2):286–294

    Article  Google Scholar 

  • Fernández JE (2010) Urban metabolism of ancient Caral, Peru. [2021-10-12]. http://src.lafargeholcim-foundation.org/dnl/466e9f92-de70-4ed9-ac48-f72095668c53/F10_GreenWorkshop_Paper_FernandezJohn.pdf

  • Ferrão P, Fernández JE (2013) Sustainable urban metabolism. MIT Press, Boston, MA

    Book  Google Scholar 

  • Fischer-Kowalski M (1998) Society’s metabolism: the intellectual history of materials flow analysis, Part I 1860–1970. J Ind Ecol 2(1):61–78

    Article  Google Scholar 

  • Folke C, Jansson A, Larsson J et al (1997) Ecosystem appropriation by cities. Ambio 26(3):167–172

    Google Scholar 

  • Forkes J (2007) Nitrogen balance for the urban food metabolism of Toronto, Canada. Resour Conserv Recycl 52(1):74–94

    Article  Google Scholar 

  • Gandy M (2004) Rethinking urban metabolism: water, space and the modern city. City 8(3):363–379

    Article  Google Scholar 

  • Gasson B (2002) The ecological footprint of Cape Town: unsustainable resource use and planning implications. The National Conference of the South African Planning Institution, Durban, South Africa

    Google Scholar 

  • Girardet H (1996) The Gaia Atlas of cities: new directions for sustainable urban living. Gaia Books Limited, London, UK

    Google Scholar 

  • Girardet H (2004) The metabolism of cities. In: Heeler SMW, Beatley T (eds) The sustainable urban development reader. Routledge, London, UK, pp 125–132

    Google Scholar 

  • Girardet H (2008) Cities people planet: urban development and climate change, 2nd edn. Wiley, Chichester, UK

    Google Scholar 

  • Girardet H (2014) Creating regenerative cities. Routledge, New York, USA

    Book  Google Scholar 

  • Goldschmidt VM (1958) Geochemistry. Oxford University Press, London, UK

    Google Scholar 

  • Goldstein B, Birkved M, Quitzau M et al (2013) Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ Res Lett 8(3):1–14

    Article  Google Scholar 

  • Golubiewski N (2012) Is there a metabolism of an urban ecosystem? An ecological critique. Ambio 41(7):751–764

    Article  Google Scholar 

  • González A, Donnelly A, Jones M et al (2013) Decision-support system for sustainable urban metabolism in Europe. Environ Impact Assess Rev 38(1):109–119

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science 319(5864):756–760

    Article  CAS  Google Scholar 

  • Guo Z, Hu D, Zhang FH et al (2014) An integrated material metabolism model for stocks of urban road system in Bei**g, China. Sci Total Environ 470–471(1):883–894

    Article  Google Scholar 

  • Haberl H (2001) The energetic metabolism of societies, Part I: accounting concepts. J Ind Ecol 5(1):11–33

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F et al (2007) Quantifying and map** the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12947

    Article  CAS  Google Scholar 

  • Haberl H, Fischer-Kowalski M, Krausmann F et al (2004) Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 21(3):199–213

    Article  Google Scholar 

  • Hammer M, Giljum S (2006) Materialflussanalysen der Regionen Hamburg, Wien Und Leipzig. Natur und kultur 7(2):62–78

    Google Scholar 

  • Hanya T, Ambe Y (1977) A study on the metabolism of cities. In: Kaigi NG (ed) Science for a better environment. Science Council of Japan, Tokyo, Japan, pp 228–233

    Google Scholar 

  • Hashimoto S, Moriguchi Y (2004) Proposal of six indicators of material cycles for describing society’s metabolism: from the viewpoint of material flow analysis. Urban Ecosyst 40(3):185–200

    Google Scholar 

  • Havranek M (2009) ConAccount 2008: urban metabolism, measuring the ecological city. Charles University Environment Centre, Prague, Czech Republic

    Google Scholar 

  • Hedbrant J (2001) Stockhome: a spreadsheet model of urban heavy metal metabolism. Water Air Soil Pollut Focus 1(3–4):55–66

    Article  CAS  Google Scholar 

  • Hendriks C, Obernosterer R, Müller D et al (2000) Material flow analysis: a tool to support environmental policy decision making: case studies on the city of Vienna and the Swiss lowlands. Local Environ 5(3):311–328

    Article  Google Scholar 

  • Huang SL (1998) Urban ecosystems, energetic hierarchies, and ecological economics of Taibei metropolis. J Environ Manage 52(1):39–51

    Article  Google Scholar 

  • Huang SL, Hsu WL (2003) Materials flow analysis and energy evaluation of Taibei’s urban construction. Landsc Urban Plan 63(2):61–74

    Article  Google Scholar 

  • Inostroza L (2014) Measuring urban ecosystem functions through ‘Technomass’: a novel indicator to assess urban metabolism. Ecol Ind 42(3):10–19

    Article  Google Scholar 

  • Jenerette GD, Marussich WA, Newell JP (2006) Linking ecological footprints with ecosystem valuation in the provisioning of urban freshwater. Ecol Econ 59(1):38–47

    Article  Google Scholar 

  • Kennedy CA (2007) Applying industrial ecology to design a sustainable built environment: the Toronto Port Lands challenge. Engineering Sustainability Conference, Pittsburgh, USA

    Google Scholar 

  • Kennedy CA (2012) A mathematical description of urban metabolism. In: Weinstein MP, Turner E (eds) Sustainability science: the emerging paradigm and the urban environment. Springer, New York, USA, pp 275–291

    Chapter  Google Scholar 

  • Kennedy CA, Hoornweg D (2012) Mainstreaming urban metabolism. J Ind Ecol 16(6):780–782

    Article  Google Scholar 

  • Kennedy CA, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59

    Article  CAS  Google Scholar 

  • Kennedy CA, Steinberger J, Gasson B et al (2010) Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy 38(9):4828–4837

    Article  CAS  Google Scholar 

  • Kennedy CA, Pincetl S, Bunje P (2011) The study of urban metabolism and its applications to urban planning and design. Environ Pollut 159(8–9):1965–1973

    Article  CAS  Google Scholar 

  • Kennedy CA, Stewart I, Facchini A (2015) Energy and material flows of megacities. Proc Natl Acad Sci USA 112(19):5985–5990

    Article  CAS  Google Scholar 

  • Kenny T, Gray NF (2009) Comparative performance of six carbon footprint models for use in Ireland. Environ Impact Assess Rev 29(1):1–6

    Article  Google Scholar 

  • Kim E, Barles S (2012) The energy consumption of Paris and its supply areas from the eighteenth century to the present. Reg Environ Change 12(2):295–310

    Article  Google Scholar 

  • Kral U, Lin CY, Kellner K et al (2014) The copper balance of cities: exploratory insights into a European and an Asian city. J Ind Ecol 18(3):432–444

    Article  CAS  Google Scholar 

  • Krausmann F (2005) A city and its hinterland: the social metabolism of Vienna 1800–2000. Conference of the European Society for Environmental History, Florence, Italy

    Google Scholar 

  • Krausmann F, Haberl H (2002) The process of industrialization from the perspective of energetic metabolism: socioeconomic energy flows in Austria 1830–1995. Ecol Econ 41(2):177–201

    Article  Google Scholar 

  • Krausmann F, Haberl H, Schulz N et al (2003) Land-use change and socioeconomic metabolism in Austria, Part I: driving forces of land-use change 1950–1995. Land Use Policy 20(1):1–20

    Article  Google Scholar 

  • Lestel L (2012) Non-ferrous metals (Pb, Cu, Zn) needs and city development: the Paris example (1815–2009). Reg Environ Change 12(2):311–323

    Article  Google Scholar 

  • Li SS, Zhang Y, Yang ZF et al (2012) Ecological relationship analysis of the urban metabolic system of Bei**g, China. Environ Pollut 170(11):169–176

    Article  CAS  Google Scholar 

  • Li YX, Zhang Y, Yu XY (2019) Urban weight and its driving forces: a case study of Bei**g. Sci Total Environ 658(6):590–601

    CAS  Google Scholar 

  • Liang S, Zhang TZ (2012) Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: a case of Suzhou in China. Waste Manage 32(1):220–225

    Article  Google Scholar 

  • Liu JR, Wang RS, Yang JX (2005) Metabolism and driving forces in Chinese urban household consumption. Popul Environ 26(4):325–341

    Article  Google Scholar 

  • Lu ZW, Yue Q (2006) Two methods of material flow analysis and their applications. Nonferrous Met Regen Util 3(2):27–28 (in Chinese)

    Google Scholar 

  • Manning WJ (2008) Plants in urban ecosystems: essential role of urban forests in urban metabolism and succession toward sustainability. Int J Sust Dev World 15(4):362–370

    Article  Google Scholar 

  • McDonald GW, Patterson MG (2007) Bridging the divide in urban sustainability: from human exemptionalism to the new ecological paradigm. Urban Ecosyst 10(2):169–192

    Article  Google Scholar 

  • Minx J, Creutzig F, Medinger V et al (2011) Develo** a pragmatic approach to assess urban metabolism in Europe: a report to the European Environment Agency. Technische Universität Berlin

    Google Scholar 

  • Montrucchio V (2012) Systemic design approach applied to buildings: definition of a co-operative process. Int J Eng Sci 10(3):323–327

    Google Scholar 

  • Mullins P, Natalier K, Smith P et al (1999) Cities and consumption spaces. Urban Aff Rev 35(1):44–71

    Article  Google Scholar 

  • Neset TSS, Lohm U (2005) Spatial imprint of food consumption: a historical analysis for Sweden, 1870–2000. Hum Ecol 33(4):565–580

    Article  Google Scholar 

  • Newcombe K (1977) Nutrient flow in a major urban settlement, Hong Kong. Hum Ecol 5(3):179–208

    Article  Google Scholar 

  • Newcombe K, Kalma J, Aston A (1978) The metabolism of a city: the case of Hong Kong. Ambio 7(1):3–15

    Google Scholar 

  • Newman PWG (1999) Sustainability and cities: extending the metabolism model. Landsc Urban Plan 44(4):219–226

    Article  Google Scholar 

  • Newman PWG, Kenworthy J (1999) Sustainability and cities: overcoming automobile dependence. Island Press, Washington, DC

    Google Scholar 

  • Niza S, Rosado L, Ferrão P (2009) Urban metabolism: methodological advances in urban material flow accounting based on the Lisbon case study. J Ind Ecol 13(3):384–405

    Article  Google Scholar 

  • Odum EP (1953) Fundamentals of ecology. Saunders, Philadelphia, USA

    Google Scholar 

  • Odum HT (1971) Environment, power, and society. Wiley Interscience, New York, USA

    Google Scholar 

  • Odum HT (1973) Energy, ecology and economics. Ambio 2(6):220–227

    Google Scholar 

  • Odum EP (1975) Ecology: the link between the natural and social sciences. Holt, Rinehart and Winston, New York, USA

    Google Scholar 

  • Odum HT (1983) Systems ecology: an introduction. Wiley Interscience, New York, USA

    Google Scholar 

  • Odum EP (1989) Ecology and our endangered life-support systems. Sinauer, Sunderland, USA

    Google Scholar 

  • Odum HT, Odum EC (1981) Energy basis for man and nature. McGraw-Hill, New York, USA

    Google Scholar 

  • Oswald F, Baccini P, Michaeli M (2003) Netzstadt: designing the urban. Birkhäuser Basel, Basel, Switzerland

    Google Scholar 

  • Pincetl S, Bunje P, Holmes T (2012) An expanded urban metabolism method: towards a systems approach for assessing the urban energy processes and causes. Landsc Urban Plan 107(3):193–202

    Article  Google Scholar 

  • Pincetl S, Chester M, Circella G et al (2014) Enabling future sustainability transitions: an urban metabolism approach to Los Angeles. J Ind Ecol 18(6):871–882

    Article  CAS  Google Scholar 

  • Quinn D (2007) Urban metabolism: ecologically sensitive construction for a sustainable New Orleans. MIT Press, Cambridge, USA

    Google Scholar 

  • Reddy BS (2013) Metabolism of Mumbai—expectations, impasse and the need for a new beginning [2021-12-1]. http://www.igidr.ac.in/pdf/publication/WP-2013-002.pdf

  • Rosado L, Ferrão P (2009) Measuring the embodied energy in household goods: application to the Lisbon city. In: Havránek M (ed) ConAccount 2008: urban metabolism, measuring the ecological city. Charles University Environment Center, Prague, Czech Republic, pp 159–181

    Google Scholar 

  • Rosado L, Niza S, Ferrão P (2014) A material flow accounting case study of the Lisbon metropolitan area using the Urban Metabolism Analyst model. J Ind Ecol 18(1):84–101

    Article  Google Scholar 

  • Sahely HR, Dudding S, Kennedy CA (2003) Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Can J Civ Eng 30(2):468–483

    Article  CAS  Google Scholar 

  • Samaniego H, Moses ME (2008) Cities as organisms: allometric scaling of urban road networks. J Transp Land Use 1(1):21–39

    Google Scholar 

  • Satterthwaite D (1997) Sustainable cities or cities that contribute to sustainable development. Urban Study 34(10):1667–1691

    Article  Google Scholar 

  • Schandl H, Schulz NB (2002) Changes in United Kingdom’s natural relations in terms of society’s metabolism and land use from 1850 to the present day. Ecol Econ 41(2):203–221

    Article  Google Scholar 

  • Schremmer C, Stead D (2009) Sustainable urban metabolism for Europe (SUME). Proceedings of the World Bank’s Fifth Urban Research Symposium, Marseille, France

    Google Scholar 

  • Schulz NB (2007) The direct material inputs into Singapore’s development. J Ind Ecol 11(2):117–131

    Article  Google Scholar 

  • Shillington LJ (2013) Right to food, right to household urban agriculture, and socionatural metabolism in Managua, Nicaragua. Geoforum 44(1):103–111

    Article  Google Scholar 

  • Sovacool BK, Brown MA (2010) Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Policy 38(9):4856–4869

    Article  Google Scholar 

  • Stanhill G (1977) An urban agro-ecosystem: the example of nineteenth-century Paris. AgroEcosystems 3(3):269–284

    Google Scholar 

  • Susca T (2012) Multiscale approach to life cycle assessment evaluation of the effect of an increase in New York city’s rooftop albedo on human health. J Ind Ecol 16(6):951–962

    Article  Google Scholar 

  • Tello E (2005) Changing course? Principles and tools for local sustainability. In: Marshall T (ed) Transforming Barcelona. Routledge, London, UK, pp 225–250

    Google Scholar 

  • Tello E, Ostos JR (2012) Water consumption in Barcelona and its regional environmental imprint: a long-term history (1717–2008). Reg Environ Change 12(2):347–361

    Article  Google Scholar 

  • Timmerman PR, White R (1997) Megahydropolis: coastal cities in the context of global environmental change. Glob Environ Chang 7(3):205–234

    Article  Google Scholar 

  • Venkatesh G, Sægrov S, Brattebø H (2014) Dynamic metabolism modelling of urban water services: demonstrating effectiveness as a decision-support tool for Oslo, Norway. Water Res 61(17):19–33

    Article  CAS  Google Scholar 

  • Vitousek PM, Ehrlich PR, Ehrlich AH et al (1986) Human appropriation of the products of photosynthesis. Biosci 36(6):368–373

    Article  Google Scholar 

  • Wang RS, Ouyang ZY (2012) Social-economic-natural complex ecosystem and sustainability. Bull Chin Acad Sci 27(3):337–345 (in Chinese)

    Google Scholar 

  • Wang XJ, Zhang Y, Zhang J et al (2021) Progress in urban metabolism research and hotspot analysis based on CiteSpace analysis. J Clean Prod 281(2):125224

    Article  Google Scholar 

  • Warren-Rhodes K, Koenig A (2001) Escalating trends in the urban metabolism of Hong Kong: 1971–1997. Ambio 30(7):429–438

    Article  CAS  Google Scholar 

  • Weisz H, Steinberger JK (2010) Reducing energy and material flows in cities. Curr Opin Environ Sustain 2(3):185–192

    Article  Google Scholar 

  • Weisz H, Krausmann F, Amann C et al (2006) The physical economy of the European Union: cross-country comparison and determinants of material consumption. Ecol Econ 58(4):676–698

    Article  Google Scholar 

  • Wolman A (1965) The metabolism of cities. Sci Am 213(3):178–190

    Article  Google Scholar 

  • Wright DH (1990) Human impacts on energy-flow through natural ecosystem, and implications for species endangerment. Ambio 19(4):189–194

    Google Scholar 

  • Yang ZF, Zhang Y, Li SS et al (2014) Characterizing urban metabolic systems with an ecological hierarchy method, Bei**g, China. Landsc Urban Plan 121(1):19–23

    Article  Google Scholar 

  • Zeng WH, Wu B, Chai Y (2014) Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions. Front Environ Sci Eng 10(1):114–128

    Article  Google Scholar 

  • Zhang Y (2013) Urban metabolism: a review of research methodologies. Environ Pollut 178(7):463–473

    Article  CAS  Google Scholar 

  • Zhang Y, Yang ZF, Yu XY (2006a) Measurement and evaluation of interactions in complex urban ecosystem. Ecol Model 196(1):77–89

    Article  Google Scholar 

  • Zhang Y, Yang ZF, Li W (2006b) Analyses of urban ecosystem based on information entropy. Ecol Model 197(1):1–12

    Article  Google Scholar 

  • Zhang Y, Yang ZF, Yu XY (2009a) Evaluation of urban metabolism based on energy synthesis: a case study for Bei**g (China). Ecol Model 220(13):1690–1696

    Article  CAS  Google Scholar 

  • Zhang Y, Yang ZF, Yu XY (2009b) Ecological network and emergy analysis of urban metabolic systems: model development, and a case study of four Chinese cities. Ecol Model 220(11):1431–1442

    Article  Google Scholar 

  • Zhang Y, Yang ZF, Fath BD (2010a) Ecological network analysis of an urban water metabolic system: model development, and a case study for Bei**g. Sci Total Environ 408(20):4702–4711

    Article  CAS  Google Scholar 

  • Zhang Y, Yang ZF, Fath BD et al (2010b) Ecological network analysis of an urban energy metabolic system: model development, and a case study of four Chinese cities. Ecol Model 221(16):1865–1879

    Article  Google Scholar 

  • Zhang Y, **a LL, **ang WN (2014a) Analyzing spatial patterns of urban carbon metabolism: a case study in Bei**g, China. Landsc Urban Plan 130(5):184–200

    Article  Google Scholar 

  • Zhang Y, Zheng HM, Fath BD et al (2014b) Ecological network analysis of an urban metabolic system based on input-output tables: model development and case study for Bei**g. Sci Total Environ 468–469(1):642–653

    Article  Google Scholar 

  • Zhang Y, Yang ZF, Yu XY (2015) Urban metabolism: a review of current knowledge and directions for future study. Environ Sci Technol 49(19):11247–11263

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng HM, Yang ZF et al (2016) Urban energy flow processes in the Bei**g-Tian**-Hebei (**g-**-Ji) urban agglomeration: combining multi-regional input-output tables with ecological network analysis. J Clean Prod 114(3):243–256

    Article  Google Scholar 

  • Zucchetto J (1975) Energy-economic theory and mathematical models for combining the systems of man and nature, case study: the urban region of Miami, Florida. Ecol Model 1(4):241–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y. (2023). Progress in Urban Metabolism Research. In: Urban Metabolism. Springer, Singapore. https://doi.org/10.1007/978-981-19-9123-3_2

Download citation

Publish with us

Policies and ethics

Navigation