Radiation Processing of Natural Rubber Latex

  • Chapter
  • First Online:
Applications of High Energy Radiations

Abstract

Natural rubber latex (NRL) is the material of choice for the manufacture of products such as gloves, condoms, and balloons owing to its high strength, elasticity, comfort in use, good barrier properties, and “green image.” Natural rubber (NR) gains unique properties by crosslinking reactions which can be achieved in different routes, namely sulfur, peroxide, and radiation vulcanization. Among these vulcanization techniques, sulfur vulcanization provides products with superior tensile strength compared to radiation/peroxide vulcanization. The accelerators used in sulfur cure system may cause potential danger to human health and safety. Radiation vulcanized natural rubber latex (RVNRL) products have many advantages such as the absence of carcinogenic nitrosamines, low cytotoxicity, high transparency, and softness. These properties are achieved by the absence of residual sulfur, zinc oxide, and dithiocarbamates that occur in sulfur vulcanizates. The mechanical properties of both radiation (RVNRL) and peroxide vulcanized natural rubber latex (PVNRL) are low when compared to sulfur pure vulcanized natural rubber latex (SVNRL). Accordingly, radiation-induced peroxide vulcanization (RIPV) was proposed with n-butyl acrylate (n-BA) as a sensitizer and t-butyl hydroperoxide (t-BHPO) as a co-vulcanizing agent. It was found that the addition of t-BHPO is a more practical method to reduce the vulcanization dose required for natural rubber latex. It was also reported that natural rubber nanocomposites produced by blending RVNRL with dispersions of layered silicates showed excellent barrier and aging properties. As the non-rubber constituents and proteins in natural rubber latex are get removed during radiation processing RVNRL films offer excellent transparency which makes the material suitable for the manufacture of baby teats. The addition of water-soluble polymers and the grating of latex with styrene, methyl methacrylate, etc., were explored thoroughly for industrial production in niche areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verhaar G (1956) The structure of hevea latex and its viscosity. II. Rubber Chem Technol 29(4):1484–1495

    Article  Google Scholar 

  2. Hager T, MacArthur A, McIntyre D, Seeger R (1979) Chemistry and structure of natural rubber. Rubber Chem Technol 52(4):693–709

    Article  CAS  Google Scholar 

  3. Archer BL (1960) The proteins of Hevea brasiliensislatex. 4. Isolation and characterization of crystalline hevein. Biochem J 75(2):236–240

    Google Scholar 

  4. Sansatsadeekul J, Sakdapipanich J, Rojruthai P (2011) Characterisation of associated proteins and phospholipids in natural rubber latex. J Biosci Bioeng 111(6):628–634

    Article  CAS  Google Scholar 

  5. Gazeley KF, Gorton ADT, Pendle TD (1988) Technological processing of natural rubber late. In: Roberts AD (ed) Natural Rubber Science and Technology, Chapter 4. Oxford University Press, Oxford

    Google Scholar 

  6. Blackley DC (1997) Polymer latices: science and technology, vol 2, Chapter 1, Second edn. Chapman & Hall, London, p 24

    Google Scholar 

  7. Cook S, Cudby PEF, Davies RT, Morris MD (1997) The Microstructure of Natural Rubber Latex Films. Rubber Chem Technol 70(4):549–559

    Article  CAS  Google Scholar 

  8. Schidrowitz P (1923) Prevulcanization of latex and its use to manufacture dipped. British Patent 19345

    Google Scholar 

  9. Porter M, Rawi RA, Rahim SA (1992) Chemistry of the Latex Prevulcanisation Process. Part 1. Migration of React ants from the Solid Phase into Rubber Particles. J Nat Rubber Res 7(2):85–101

    Google Scholar 

  10. Loh ACP (1982) Further investigations on the prevulcanization of natural rubber latex. Ph.D Thesis. U.K. Council for National Academic Awards

    Google Scholar 

  11. Hashim MYA, Morris MD (1999) NR latex vulcanization-prevulcanization and postvulcanization of dipped NR latex films. J Nat Rubber Res 2(2):78–87

    Google Scholar 

  12. Tangboriboonrat P, Lerthititrakul C (2002) Morphology of natural rubber latex particles prevulcanised by sulphur and peroxide systems. Colloid Polym Sci 280(12):1097–1103

    Article  CAS  Google Scholar 

  13. Kemp I (1959) Improvements in the vulcanisation of aqueous dispersions of rubber. British Patent 816:230–242

    Google Scholar 

  14. Chirinos H, Yoshii F, Makuuchi K, Lugao A (2003) Radiation vulcanization of natural rubber latex using 250 keV electron beam machine. Nucl Instrum Methods Phys Res Sect B 208:256–259

    Article  CAS  Google Scholar 

  15. Makuuchi K (2003) An introduction to radiation vulcanization of natural rubber latex. T.R.I. Global Co., Ltd., Bangkok, pp 35–36

    Google Scholar 

  16. Minoura Y, Asao M (1961) Studies on the γ-irradiation of natural rubber latex. J Appl Polym Sci 5(14):233–239

    Article  CAS  Google Scholar 

  17. Minoura Y, Asao M (1961) Studies on the γ-irradiation of natural rubber latex. The effects of organic halogen compounds on crosslinking by γ-irradiation. J Appl Polym Sci 5(16):401–407

    Google Scholar 

  18. Tadorov M (1967) Mechanism of radiation vulcanization of latex. Proccedings of Second Tihany Symposium on Radiation Chemistry, Akademiai Kiado, Budapest, pp 749–756

    Google Scholar 

  19. Salmon WA, Loan LD (1972) Radiation crosslinking of poly(vinyl chloride). J Appl Polym Sci 16(3):671–682

    Article  CAS  Google Scholar 

  20. Razzak MT, Yoshii F, Makuuchi K, Ishigaki I (1991) Thermoplastic elastomer by radiation grafting. I. Evaluation of processability of natural rubber grafted methyl methacrylate. J Appl Polym Sci 43(5):883–890

    Google Scholar 

  21. Charmondusit K, Kiathamjornwong S, Pattarapan Prasassarakich P (1988) Grafting of methyl methacrylate and styrene onto natural rubber. J Sci Res Chulalongkorn Univ 23(2):167–181

    Google Scholar 

  22. Onyeagoro GN (2012) Preparation and characterization of natural rubber latex grafted with ethylacrylate (ea)—methylmethacrylate (mma) monomers mixture. Acad Res Int 3(1):387–392

    Google Scholar 

  23. Ragupathy L, Ziener U, Robert G, Landfester K (2011) Grafting polyacrylates on natural rubber latex by miniemulsion polymerization. Colloid Polym Sci 289(3):229–235

    Google Scholar 

  24. Makuuchi K, Hagiwara M (1984) Radiation vulcanization of natural rubber latex with polyfunctional monomers. J Appl Polym Sci 29(3):965–976

    Article  CAS  Google Scholar 

  25. Jayasuriya M, Makuuchi K, Yoshi F (2001) Radiation vulcanization of natural rubber latex using TMPTMA and PEA. Eur Polymer J 37(1):93–98

    Article  CAS  Google Scholar 

  26. Makuuchi K, Tsushima K (1988) Radiation vulcanization of natural rubber latex with monofunctional monomers. J Soc Rubber Ind Jpn (Nippon Gomu Kyoukaishi) 61(7):478–482

    Google Scholar 

  27. Makuuchi K, Hagiwara M, Serizawa T (1984) Radiation vulcanization of natural rubber latex with polyfunctional monomers—II. Radiat Phys Chem (1977) 24(2):203–207

    Google Scholar 

  28. Haque MDE, Makkuchi K, Mitomo H, Yoshi F (2005) A new trend in radiation vulcanization of natural rubber latex with a low energy electron beam. Polym J 37(5):333–339

    Google Scholar 

  29. Makuuchi K, Yoshii F, Ishigaki I, Tsushima K, Mogi M, Saito T (1990) Development of rubber gloves by radiation vulcanization. Int J Radiat Appl Instrum Part C Radiat Phys Chem 35(1–3):154–157

    Google Scholar 

  30. Zhonhai C, Makuuchi K (1996) n-butyl acrylate as sensitizer for RVNRL. In: Proccedings of international symposium on radiation vulcanization of natural rubber latex, JAERI-M 89-228, pp 326–335

    Google Scholar 

  31. Haque ME, Dafader NC, Akhtar F, Ahmad MU (1996) Radiation dose required for the vulcanization of natural rubber latex. Radiat Phys Chem 48(4):505–510

    Article  CAS  Google Scholar 

  32. Chuniel W, Makuuchi K, Yoshii F, Hyakutake K (1996) Reduction of N-butyl acrylate sensitizer in radiation vulcanized natural rubber latex. In: Proccedings of International Symposium on Radiation vulcanization of natural rubber latex, p 252

    Google Scholar 

  33. Siri Upathum C, Sonsuk M (1996) Development of an efficient process for radiation vulcanization of natural rubber latex using hydroperoxide with sensitizer. In: Proceedings of the second international symposium on RVNRL (Kuala Lumpur, Malaysia, pp 15–17

    Google Scholar 

  34. Ibrahim S, Badri K, Ratnam CT, Ali NHM (2018) Enhancing mechanical properties of prevulcanized natural rubber latex via hybrid radiation and peroxidation vulcanizations at various irradiation doses. Radiat Eff Defects Solids 173(5–6):427–434

    Article  CAS  Google Scholar 

  35. Varghese N, Varghese S, Nambiathodi V, Kurian T (2020) Radiation induced peroxide vulcanization of natural rubber latex. Rubber Sci 33(1):74–85

    Google Scholar 

  36. Mina MF, Alam MM, Akhtar F, Imaizumi K, Yoshida S, Toyama N, Asano T (2003) Centrifuging effect on the structure and property of natural rubber latex films. Polym-Plast Technol Eng 42(4):503–514

    Article  CAS  Google Scholar 

  37. Dafader NC, Haque ME, Akhtar F, Ahmad MU, Utama M (1996) Evaluation of the properties of natural rubber latex concentrated by creaming method for gamma ray irradiation. J Macromol Sci Part A 33(sup2):73–81

    Article  Google Scholar 

  38. Nguyen QH, Thein VO, Hai L, Thuan TN (1996) Study of vietnam latex for radiation vulcanization. In: Proccedings of second international symposium on radiation vulcanization of natural rubber latex, JAERI-M 89-228, pp 326–335

    Google Scholar 

  39. Utama M (1991) Effect of volatile fatty acid number and irradiation dose in the quality of irradiated natural rubber latex. Majalah BATAN 24(1/2):22–30

    Google Scholar 

  40. Thiangchanya A, Siri-upathum C, Na-ranong N, Sonsuk M (2003) Improvement of RVNRL film properties by adding fumed silica and hydroxy apatite. J Sci Technol 25(1):53–61

    Google Scholar 

  41. Rahman W, Alam J, Khan MR (2015) Investigation of polymer degradation by addition of magnesium. Int J Polym Anal Charact 21(2):156–162

    Article  Google Scholar 

  42. Rahman W, Alam J, Khan MR (2015) Effect of manganese on radiation vulcanization of natural rubber. Int J Polym Anal Charact 20(5):406–413

    Article  CAS  Google Scholar 

  43. Wiroonpochit P, Uttra K, Jantawatchai K, Hansupalak N, Chisti Y (2017) Sulfur-free prevulcanization of natural rubber latex by ultraviolet irradiation in the presence of diacrylates. Ind Eng Chem Res 56(25):7217–7223

    Article  CAS  Google Scholar 

  44. Dafader NC, Haque ME, Jolly YN, Akhtar F, Ahmad MU (2003) Dependence of physicochemical properties of radiation vulcanized natural rubber latex film on maturation time. Polym-Plast Technol Eng 42(2):217–227

    Article  CAS  Google Scholar 

  45. Tangboriboonrat P, Tiyapiboonchaiya C, Lerthititrakul C (1998) New evidence of the surface morphology of deproteinized natural rubber particles. Polym Bull 41(5):601–608

    Google Scholar 

  46. Roslim R, Tan KS, Jefri J (2018) Study on morphological structures and mechanical properties of natural rubber latex films prepared at different prevulcanisation and drying temperatures. J Rubber Res 21(1):1–16

    Article  CAS  Google Scholar 

  47. Hashim A, Morris MD (1999) NR latex vulcanisation and postvulcanisation of dipped NR latex films. J Rubber Res 2(2):78–87

    Google Scholar 

  48. Hashim MYA, Morris MD, O’Brien MG, Farid AS (1998) Effect of leaching and humidity on prevulcanised NR latex films. Rubber Chem Technol 70(4):1–12

    Google Scholar 

  49. Varghese S, Katsumura Y, Makuuchi K, Yoshi F (1999) Effect of water soluble polymers on radiation vulcanized natural rubber latex films. Rubber Chem Technol 72(2):308–317

    Article  CAS  Google Scholar 

  50. Atieh MA, Nazir N, Yusof F, Fettouhi M, Ratnam CT, Alharthi M, Al-Amer A (2010) Radiation vulcanization of natural rubber latex loaded with carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct 18(1):56–71

    Article  CAS  Google Scholar 

  51. Hossain KMZ, Sharif N, Dafader NC, Haque ME, Chowdhury AMS (2013) Physicochemical, thermomechanical, and swelling properties of radiation vulcanised natural rubber latex film: effect of diospyros peregrina fruit extracts. ISRN Polym Sci 2013:1–8

    Article  Google Scholar 

  52. Tun ZM, Lay KK (2017) Research on urea concentration effect in the radiation vulcanization of natural rubber latex. In: Proceedings of 105th the IIER international conference, Bangkok, Thailand, 5th–6th, pp 125–129

    Google Scholar 

  53. Anand K, Varghese S, Kurian T (2018) Properties of radiation vulcanised natural rubber latex (RVNRL)–graphene nanocomposites. Polym Polym Compos 26(8–9):1–12

    Google Scholar 

  54. Moonlek B, Saenboonruang K (2019) Mechanical and electrical properties of radiation-vulcanized natural rubber latex with waste eggshell powder as bio-fillers. Radiat Eff Defects Solids 174(5–6):1–15

    Google Scholar 

  55. Lay M, Siti Nuraya, Hwa KT, Rashid AA (2019) Ecofriendly latex films from cassava starch-filled radiation pre-vulcanized natural rubber. Radiat Effects Defects Solids 174(9–10):741–751

    Google Scholar 

  56. Makuuchi K, Yoshii F, Miura H, Murakami K (1996) Effect of heterogeneous distribution of crosslink density on physical properties of RVNRL film. In: Procceding of second international symposium on RVNRL, p 64

    Google Scholar 

  57. Sonsuk M, Makuuchi K (1996) Improvement of hardness of RVNRL film. In: Procceding of second international symposium on RVNRL, p 244

    Google Scholar 

  58. Dafader NC, Haque ME, Akhtar F, Ahmad MU (2006) Study on the properties of blend rubber between grafted rubber latex and natural rubber latex by gamma radiation. Polym-Plast Technol Eng 45(7):889–892

    Article  CAS  Google Scholar 

  59. Dafadar NC, Haque ME, Akhtar F (2007) Study on the properties of blend of natural rubber latex/methyl methacrylate grafted rubber latex by gamma radiation. Chin J Polym Sci 25(05):519–523

    Article  Google Scholar 

  60. Pongsathit S, Pattamaprom C (2018) Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends. Radiat Phys Chem 144:13–20

    Article  CAS  Google Scholar 

  61. Haque ME, Yoshii F, Makuuchi K (1995) Effect of immersion in tap water on the reduction of tackiness of the film prepared from radiation vulcanized natural rubber latex. J Macromol Sci Part A 32(sup3):249–254

    Article  Google Scholar 

  62. Ratnam CT, Yoshii F, Makuuchi K, Zaman K (1999) Hydrogel coating of RVNRL film by electron-beam irradiation. J Appl Polym Sci 72(11):1421–1428

    Article  CAS  Google Scholar 

  63. Makuuchi K, Thushima K (1988) Radiation vulcanization of natural rubber latex. (V). Physical properties of rubbers from radiation vulcanized latex. J Soc Rubber Ind Jpn, NIPPON GOMU KYOKAISHI 61(8):586–591

    Google Scholar 

  64. Makuuchi K (2003) An introduction to Irradiation Vulcanization of Natural Rubber Latex, T.R.I Global Co Ltd, Bangkok, Thailand, 62–65, 108–119

    Google Scholar 

  65. Abad LV, Rosa AD, Makuuchi K, Yoshii F (1996) The role of proteins on the thermal oxidative aging of radiation vulcanized natural rubber latex. In: Proceeding of the second internatioanal symposium on RVNRL, Kuala Lumpur, Malaysia, pp 263–273

    Google Scholar 

  66. Abad LV, Relleve LS, Aranilla CT, Aliganga AK, San Diego CM, dela Rosa AM (2002) Natural antioxidants for radiation vulcanization of natural rubber latex. Polym Degrad Stability 76(2):275–279

    Google Scholar 

  67. Yoshii F, Kulatunge S, Makuuchi K (1993) Improvement of aging properties of rubber films prepared from radiation vulcanized natural rubber latex film. Angew Makromol Chem 205(1):107–115

    Article  CAS  Google Scholar 

  68. Makuuchi K, Yoshii F, Kokuzawa M, Kulatunge S, Thiangchanya A (1993) Aging properties of radiation vulcanized NR latex film. Radiat Phys Chem 42(1–3):237–240

    Article  CAS  Google Scholar 

  69. Hasan R, Molla AI, Karim MM (2011) Determination of protein content in gamma (γ)-ray irradiated and non-irradiated natural rubber latex film. Int J Basic Appl Sci 11(04):34–37

    Google Scholar 

  70. Ratnayake U, Makuuchi K, Yoshii F (1999) Quality improvement of radiation vulcanized natural rubber latex by addition of polyvinyl alcohol and centrifugation. J Rubber Res Inst Sri Lanka 82:8–21

    Google Scholar 

  71. Ratnayake U, Makuuchi K, Yoshii F (2001) Soluble-protein-free radiation-vulcanised natural rubber latex. J Rubber Res 4(3):153–163

    CAS  Google Scholar 

  72. Chvajarernpun J, Siri Upathum C (2003) Gamma irradiation of anionic natural polymer solution for use as latex protein scavenger. In: Yoshi F, Kume T (eds) Proceeding of FNCA 2002, Workshop on application of electron accelerator: radiation system for liquid samples, JAERI conf 2003-016, Tokyo, pp 80–81

    Google Scholar 

  73. Akiba M (1997) Vulcanization and crosslinking in elastomers. Prog Polym Sci 22(3):475–521

    Article  CAS  Google Scholar 

  74. Chen M, Zhang B, Den C, Qian H, Zhou H (2005) Comparison and evaluation of the thermooxidative stability of medical natural rubber latex products prepared with a sulfur vulcanization system and a peroxide vulcanization system. J Appl Polym Sci 98(2):591–597

    Article  CAS  Google Scholar 

  75. Haque ME, Makuuchi K, Mitomo H, Yoshii F, Ikeda K (2005) A new trend in radiation vulcanization of natural rubber latex with a low energy electron beam. Polym J 37(5):333–339

    Article  CAS  Google Scholar 

  76. Cheong IW, Fellows CM, Gilbert RG (2004) Synthesis and cross-linking of polyisoprene latexes. Polymer 45(3):769–781

    Google Scholar 

  77. Tangboriboonrat P, Tiyapiboonchaiya C (1997) Novel method for toughening of polystyrene based on natural rubber latex. J Appl Polym Sci 71(8):1333–1345

    Article  Google Scholar 

  78. Che J, Toki S, Valentin JL, Brasero J, Nimpaiboon A, Rong L (2012) Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum NMR and uniaxial deformation by in situ synchrotron x-ray diffraction. Macromolecules 45(16):6491–6503

    Article  CAS  Google Scholar 

  79. Tangboriboonrat P, Polpanich D, Suteewong T, Sanguansap K, Paiphansiri U, Lerthititrakul C (2003) Morphology of peroxide-prevulcanised natural rubber latex: effect of reaction time and deproteinisation. Colloid Polym Sci 282(2):177–181

    Article  CAS  Google Scholar 

  80. Makuuchi K (2000) Progress in radiation vulcanization of naturalrubber latex. In: Kume T, Maekawa Y (eds) Proceedings of the Takasaki workshop on bilateral cooperations: radiation processing of natural polymers, Japan Atomic Energy Research Institute: Takasaki, Japan, p 32

    Google Scholar 

  81. Schlögl S, Temel A, Schaller R, Holzner A, Kern W (2010) Prevulcanization of natural rubber latex by UV techniques: a processtowards reducing type IV chemical sensitivity of latex articles. Rubber Chem Technol 83(2):133–148

    Google Scholar 

  82. Schlögl S, Temel A, Schaller R, Holzner A, Kern W, Characteristics of the photochemical prevulcanization in a falling film photoreactor. J Appl Polym Sci 124(4):3478–3486

    Google Scholar 

  83. Decker C (2011) UV radiation curing of adhesives. In: Ebnesajjad S (ed) Handbook of adhesives and surface preparation. William Andrew Publishing, Oxford, UK, p 221

    Google Scholar 

  84. Chai CK, Lazim MN (2019) Radiation vulcanization of natural rubber latex by Caesium 137. IOP conference series, materials science and engineering, international nuclear science technology and engineering conference, vol 785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siby Varghese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varghese, N., Varghese, S., Thomas, S. (2023). Radiation Processing of Natural Rubber Latex. In: Chowdhury, S.R. (eds) Applications of High Energy Radiations. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-9048-9_9

Download citation

Publish with us

Policies and ethics

Navigation