Numerical Simulation and Analysis of Two-Phase Flow Around Cylinder Using Pseudo-Potential Model and Liutex Method

  • Conference paper
  • First Online:
Liutex and Third Generation of Vortex Identification

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 288))

  • 350 Accesses

Abstract

Two-phase systems have a wide range of applications in nuclear energy, chemical industry, petroleum, refrigeration and other industrial processes. In this paper, the lattice Boltzmann method that is apt for multiphase flow simulation is adopted, and the third-generation vortex identification method Liutex that is able to distinctly identify rotational vortex is utilized to analyze the vortex field. The two-phase cross flow around columns or tube bundles is widely used in industrial equipment with heat exchange. Based on the practical engineering background, this paper presents a comparative numerical analysis on the two-phase flow around single cylinder under different Reynolds numbers and investigates the evolution of vortex field. The 2D and 3D numerical simulation results has shown the flow field, the vortex shedding pattern, as well as the drag and lift of each column. In particular, the conditions of Re = 30 and Re = 120 in 2D are calculated respectively, corresponding to the conditions of wake vortex stability and laminar vortex street. The drag and lift forces are mainly affected by continuous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\({\mathbf{c}}_{\mathbf{i}}\) :

Discrete particle speed

\(f\) :

Distribution function

\({f}_{i}\) :

Particle distribution function

\({f}^{eq}\) :

Equilibrium distribution function

\({F}_{i}\) :

Discrete external force

\({F}_{\mathrm{SC}}\) :

Shan-Chen force

lu :

Lattice unit

lt :

Lattice time

LBM:

Lattice Boltzmann method

\(Q\) :

Q vortex identification

\({\varvec{R}}\) :

Liutex

Re:

Reynolds number

\({\varvec{S}}\) :

Shear

St:

Strouhal number

\(\mathbf{u}\) :

Macroscopic velocity

\(\alpha\) :

Void fraction

\(\rho\) :

Density

\(\tau\) :

Dimensionless relaxation time

\({\tau }_{c}\) :

Relaxation time

\(\upsilon\) :

Collision frequency

\(\psi\) :

Pseudo-potential function

\({\varvec{\omega}}\) :

Vorticity

\({\omega }_{i}\) :

Weight coefficient correspond with \({\mathbf{c}}_{\mathbf{i}}\)

\(\varOmega \left(f\right)\) :

Collision operator

\(\varOmega\) :

Omega vortex identification

\({\varOmega }_{R}\) :

Omega-Liutex vortex identification

c:

Continuous phase

d:

Dispersed phase

t:

Total force

\(\sigma\) :

\({\text{`}} \sigma {\text{'}}\) Component of multiphase system

D:

Drag

L:

Lift

References

  1. A. Inoue, Y. Kozawa, M. Yokosawa et al., Studies on two-phase cross flow. Part I: flow characteristics around a cylinder. Int. J. Multiph. Flow 12(2):149–167 (1986)

    Google Scholar 

  2. Y. Joo, V.K. Dhir, An experimental study of drag on a single tube and on a tube in an array under two-phase cross flow. Int. J. Multiph. Flow 20(6), 1009–1019 (1994)

    Article  MATH  Google Scholar 

  3. J.C. Lu, Z.W. **e, Y.P. Wang, Z.H. Lin, M.K. Wang, Pressure distributions around circular cylinder for gas-liquid two-phase cross flow. J. **’an Jiaotong Univ. 01, 58–61 (1999)

    Google Scholar 

  4. J.C. Lu, Z.W. **e, Y.P. Wang, Z.H. Lin, M.K. Wang, Study on the fluctuating lift acting on a circular cylinder under two-phase cross-flow. Chin. J. Appl. Mech. 1, 76–80 (2000)

    ADS  Google Scholar 

  5. Y.L. Zhou, W.P. Hong, G.P. Wang, Numerical simulation of vortex shedding frequency and the oscillation lift based on gas-liquid two-phase flow around circular cylinders in the vertical pipeline. J. Hydrodyn. 02, 194–201 (2007)

    Google Scholar 

  6. Y.L. Zhou, C.D. Diao, R. Cao, Study of gas-liquid two-phase vortex street characteristics of a square cylinder and a circular one. J. Eng. Thermal Energy Power 24(06), 746–749+817–818 (2009)

    Google Scholar 

  7. X.B. Li, Lattice Boltzmann method and its application on the numerical simulation of flows past cylinders. (Tian** University, 2006)

    Google Scholar 

  8. W.Y. Kou, Z.G. Bai, Numerical simulation of flow around multi-type obstacles by the lattice Boltzmann method. J. Tian** Univ. Technol. 31(02), 1–5 (2015)

    Google Scholar 

  9. T.Q. Chen, Lattice Boltzmann simulation of the flow around a circular cylinder. (Tian** University, 2007)

    Google Scholar 

  10. P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Google Scholar 

  11. Y.H. Qian, D. d’Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation. EPL (Europhys. Lett.) 17(6), 479 (1992)

    Article  ADS  MATH  Google Scholar 

  12. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815–1819 (1993)

    Article  ADS  Google Scholar 

  13. H. Helmholtz, Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik 55, 25–55 (1858)

    MathSciNet  MATH  Google Scholar 

  14. J.C.R. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows. Center for turbulence research report CTR-S88, pp. 193–208 (1988)

    Google Scholar 

  15. C.Q. Liu, Y.Q. Wang, Y. Yang et al., New omega vortex identification method. Sci. China 59(8), 684711 (2016)

    Google Scholar 

  16. C. Liu, Y. Gao, S. Tian, et al., Rortex a new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30(3) (2018)

    Google Scholar 

  17. Y. Gao, C. Liu, Rortex and comparison with eigenvalue-based vortex identification criteria. Phys. Fluids 30(8), 085107 (2018)

    Article  ADS  Google Scholar 

  18. Y.Q. Wang, Y.S. Gao, J.M. Liu, et al., Explicit formula for the liutex vector and physical meaning of vorticity based on the liutex-shear decomposition. J. Hydrodyn. 31(3), 464–474 (2019)

    Google Scholar 

  19. X. Dong, Y. Gao, C. Liu, New normalized Rortex/vortex identification method. Phys. Fluids 31(1) (2019)

    Google Scholar 

  20. A. Banari, C. Janßen, S.T. Grilli, M. Krafczyk, Efficient GPGPU implementation of a lattice Boltzmann model for multiphase flows with high density ratios. Comput. Fluids 93, 1–17. (2014). https://doi.org/10.1016/j.compfluid.2014.01.004.

  21. P. Cheng, N. Gui, X. Yang, J. Tu, S. Jiang, H. Jia, Liutex-based analysis of drag force and vortex in two-phase flow past 2-D square obstacle using LBM on GPU. J. Hydrodyn. 32(5), 820–833. (2020) https://doi.org/10.1007/s42241-020-0058-5

  22. Z.H. Lin, Y.G. Li, J.C. Lu, et al., Vortex shedding characteristics of gas-liquid two-phase flow and its engineering application (in Chinese). (Chemical Industry Press, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Gui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z. et al. (2023). Numerical Simulation and Analysis of Two-Phase Flow Around Cylinder Using Pseudo-Potential Model and Liutex Method. In: Wang, Y., Gao, Y., Liu, C. (eds) Liutex and Third Generation of Vortex Identification. Springer Proceedings in Physics, vol 288. Springer, Singapore. https://doi.org/10.1007/978-981-19-8955-1_13

Download citation

Publish with us

Policies and ethics

Navigation