Targeting CDKs with Other Chemotherapeutic Drugs: A Combinatorial Approach

  • Chapter
  • First Online:
Therapeutic potential of Cell Cycle Kinases in Breast Cancer

Abstract

Among the various breast cancer subtypes, hormone receptor positive (HR+) breast cancer is frequently diagnosed with nearly thousands of patients affected every year. The main treatment option for breast cancer is the endocrine therapy but that remains ineffective because of the relapse or recurrence of the disease with advanced metastatic spread among the treated patients with the development of chemoresistance posing altogether a great problem in diagnosing this disease. Therefore, for enhancing the efficacy of current treatment regimens it is imperative to find novel targets, therapeutic agents, and regulatory pathways to increase the efficacy of current treatments available for diagnosing breast cancer. In this regard, dysregulation of the cell cycle plays a critical role in the development of tumorigenesis and is one of the hall marks of cancer. The loss of the control of the cell cycle pertains to the uncoordinated growth leading to cancer. Therefore, targeting breast cancer with CDK inhibitors may help in curbing the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali S et al (2009) The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res 69(15):6208–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzani R et al (2010) Therapeutic efficacy of the pan-cdk inhibitor PHA-793887 in vitro and in vivo in engraftment and high-burden leukemia models. Exp Hematol 38(4):259–269

    Article  CAS  PubMed  Google Scholar 

  • Appleyard MVCL et al (2009) Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer 124(2):465–472

    Article  CAS  PubMed  Google Scholar 

  • Arellano M, Moreno S (1997) Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol 29(4):559–573

    Article  CAS  PubMed  Google Scholar 

  • Bailon-Moscoso N et al (2017) Natural compounds as modulators of cell cycle arrest: application for anticancer chemotherapies. Curr Genomics 18(2):106–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker A et al (2016) The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia. Cancer Res 76(5):1158–1169

    Article  CAS  PubMed  Google Scholar 

  • Birdsall TC (1997) Berberine: therapeutic potential of alkaloid found in several medicinal plants. Altern Med Rev 2:94–103

    Google Scholar 

  • Blazek D et al (2011) The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25(20):2158–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowczak J et al (2022) CDK9 inhibitors in multiple myeloma: a review of progress and perspectives. Med Oncol 39(4):1–15

    Article  Google Scholar 

  • Cassaday RD et al (2015) A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Clinical Lymphoma Myeloma and Leukemia 15(7):392–397

    Article  Google Scholar 

  • Cavins JA et al (1967) Initial toxicity study of sangivamycin (NSC-65346). Cancer Chemother Rep 51(4):197–200

    CAS  PubMed  Google Scholar 

  • Chan K-C et al (2010) Polyphenol-rich extract from mulberry leaf inhibits vascular smooth muscle cell proliferation involving upregulation of p53 and inhibition of cyclin-dependent kinase. J Agric Food Chem 58(4):2536–2542

    Article  CAS  PubMed  Google Scholar 

  • Chao S-H et al (2000) Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275(37):28345–28348

    Article  CAS  PubMed  Google Scholar 

  • Cho BC et al (2018) Phase Ib/II study of the pan-cyclin-dependent kinase inhibitor roniciclib in combination with chemotherapy in patients with extensive-disease small-cell lung cancer. Lung Cancer 123:14–21

    Article  PubMed  Google Scholar 

  • Cidado J et al (2020) AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer CellsAZD4573, a selective CDK9 inhibitor, targets MCL-1. Clin Cancer Res 26(4):922–934

    Article  CAS  PubMed  Google Scholar 

  • Davidson G et al (2009) Cell cycle control of wnt receptor activation. Dev Cell 17(6):788–799

    Article  CAS  PubMed  Google Scholar 

  • Deng J et al (2018) CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov 8(2):216–233

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Padilla I et al (2009) Cyclin-dependent kinase inhibitors as potential targeted anticancer agents. Investig New Drugs 27(6):586–594

    Article  CAS  Google Scholar 

  • Dickson MA (2014) Molecular pathways: CDK4 inhibitors for cancer TherapyCDK4 inhibitors. Clin Cancer Res 20(13):3379–3383

    Article  CAS  PubMed  Google Scholar 

  • Frame S et al (2020) Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS One 15(7):e0234103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry DW et al (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3(11):1427–1438

    Article  CAS  PubMed  Google Scholar 

  • Goh KC et al (2012) TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia 26(2):236–243

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hortobagyi GN (2018) Ribociclib for the first-line treatment of advanced hormone receptor-positive breast cancer: a review of subgroup analyses from the MONALEESA-2 trial. Breast Cancer Res 20(1):1–11

    Article  Google Scholar 

  • Iniguez AB et al (2018) EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell 33(2):202–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M et al (2009) Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1. FEBS Lett 583(13):2171–2178

    Article  CAS  PubMed  Google Scholar 

  • Johnson AJ et al (2012) The novel cyclin-dependent kinase inhibitor dinaciclib (SCH727965) promotes apoptosis and abrogates microenvironmental cytokine protection in chronic lymphocytic leukemia cells. Leukemia 26(12):2554–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J et al (2012) Methyl nomilinate from citrus can modulate cell cycle regulators to induce cytotoxicity in human colon cancer (SW480) cells in vitro. Toxicol In Vitro 26(7):1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M et al (1994) A cyclin-dependent kinase inhibitor, butyrolactone I, inhibits phosphorylation of RB protein and cell cycle progression. Oncogene 9(9):2549–2557

    CAS  PubMed  Google Scholar 

  • Kumar N et al (2014) Chebulagic acid from Terminalia chebula causes G1 arrest, inhibits NFκB and induces apoptosis in retinoblastoma cells. BMC Complement Altern Med 14(1):1–10

    Article  Google Scholar 

  • Kwapisz D (2017) Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Res Treat 166(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093

    Article  CAS  PubMed  Google Scholar 

  • Lin S-F et al (2018) Activity of roniciclib in medullary thyroid cancer. Oncotarget 9(46):28030

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin TS et al (2010) Flavopiridol, fludarabine, and rituximab in mantle cell lymphoma and indolent B-cell lymphoproliferative disorders. J Clin Oncol 28(3):418

    Article  CAS  PubMed  Google Scholar 

  • Locatelli G et al (2010) Transcriptional analysis of an E2F gene signature as a biomarker of activity of the cyclin-dependent kinase inhibitor PHA-793887 in tumor and skin biopsies from a phase I clinical study. Mol Cancer Ther 9(5):1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Lücking U et al (2017) Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem 12(21):1776–1793

    Article  PubMed  PubMed Central  Google Scholar 

  • Malorni L et al (2018) Palbociclib as single agent or in combination with the endocrine therapy received before disease progression for estrogen receptor-positive, HER2-negative metastatic breast cancer: TREnd trial. Ann Oncol 29(8):1748–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166

    Article  CAS  PubMed  Google Scholar 

  • Manohar SM et al (2012) Cyclin-dependent kinase inhibitor, P276-00, inhibits HIF-1α and induces G2/M arrest under hypoxia in prostate cancer cells. Prostate Cancer Prostatic Dis 15(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Massard C et al (2011) A first in man, phase I dose-escalation study of PHA-793887, an inhibitor of multiple cyclin-dependent kinases (CDK2, 1 and 4) reveals unexpected hepatotoxicity in patients with solid tumors. Cell Cycle 10(6):963–970

    Article  CAS  PubMed  Google Scholar 

  • Mehraj U et al (2022a) Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: a comprehensive analysis. Advances in Cancer Biology-Metastasis 100037:100037

    Article  Google Scholar 

  • Mehraj U et al (2021a) Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 87:1–12

    Article  Google Scholar 

  • Mehraj U et al (2021b) The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: new challenges and therapeutic opportunities. Cell Oncol 44:1–21

    Article  Google Scholar 

  • Mehraj U et al (2022b) Adapalene synergistically with doxorubicin promotes apoptosis of TNBC cells by hyperactivation of the ERK1/2 pathway through ROS induction, vol 12

    Google Scholar 

  • Mehraj U et al (n.d.) Chemokines in triple-negative breast cancer heterogeneity: new challenges for clinical implications. Elsevier

    Google Scholar 

  • Mehraj U et al (2021c) Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer 28(3):539–555

    Article  PubMed  Google Scholar 

  • Mehraj, U., et al. (2022c). Cryptolepine targets TOP2A and inhibits tumor cell proliferation in breast cancer cells-an in vitro and in silico study. Anti-cancer Agents in Medicinal Chemistry

    Google Scholar 

  • Mehraj U et al (2022d) Expression pattern and prognostic significance of CDKs in breast cancer: an integrated bioinformatic study. Cancer Biomarkers(Preprint):1–15

    Google Scholar 

  • Meijer L et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243(1–2):527–536

    Article  CAS  PubMed  Google Scholar 

  • Mir MA et al (2020) Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets 20(8):586–602

    Article  CAS  PubMed  Google Scholar 

  • Mishra PB et al (2013) Molecular mechanisms of anti-tumor properties of P276-00 in head and neck squamous cell carcinoma. J Transl Med 11(1):1–11

    Article  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261

    Article  CAS  PubMed  Google Scholar 

  • Olson CM et al (2019) Development of a selective CDK7 covalent inhibitor reveals predominant cell-cycle phenotype. Cell chemical biology 26(6):792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallis M et al (2017) Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget 8(10):16220

    Article  PubMed  Google Scholar 

  • Patel H et al (2018) ICEC0942, an orally bioavailable selective inhibitor of CDK7 for cancer TreatmentICEC0942, a CDK7 inhibitor for cancer therapy. Mol Cancer Ther 17(6):1156–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponder KG et al (2016) Dual inhibition of mcl-1 by the combination of carfilzomib and TG02 in multiple myeloma. Cancer Biol Ther 17(7):769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon E et al (2020) Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. J Clin Invest 130(11):5875–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qayoom H et al (2022) Expression patterns and therapeutic implications of CDK4 across multiple carcinomas: a molecular docking and MD simulation study. Med Oncol 39(10):1–13

    Article  Google Scholar 

  • Qayoom H et al (2021) An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 17(31):4185–4206

    Article  CAS  PubMed  Google Scholar 

  • Quereda V et al (2019) Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell 36(5):545–558

    Article  CAS  PubMed  Google Scholar 

  • Rugo HS et al (2021) Management of abemaciclib-associated adverse events in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: safety analysis of MONARCH 2 and MONARCH 3. Oncologist 26(1):e53–e65

    Article  CAS  PubMed  Google Scholar 

  • Saqub H et al (2020) Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Shankar S et al (2007) Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Frontiers in Bioscience-Landmark 12(13):5039–5051

    Article  CAS  Google Scholar 

  • Shirsath NP et al (2012) P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines. Mol Cancer 11(1):1–12

    Article  Google Scholar 

  • Sofi S et al (2022a) Targeting cyclin-dependent kinase 1 (CDK1) in cancer: molecular docking and dynamic simulations of potential CDK1 inhibitors. Med Oncol 39(9):1–15

    Article  Google Scholar 

  • Sofi S et al (2022b) Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 39(6):1–16

    Article  Google Scholar 

  • Su Y-T et al (2018) Novel targeting of transcription and metabolism in GlioblastomaTG02 in glioblastoma treatment. Clin Cancer Res 24(5):1124–1137

    Article  CAS  PubMed  Google Scholar 

  • Swaffer MP et al (2016) CDK substrate phosphorylation and ordering the cell cycle. Cell 167(7):1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syn NL et al (2018) Pan-CDK inhibition augments cisplatin lethality in nasopharyngeal carcinoma cell lines and xenograft models. Signal Transduct Target Ther 3(1):1–9

    CAS  Google Scholar 

  • Vermeulen K et al (2002) Antiproliferative effect of plant cytokinin analogues with an inhibitory activity on cyclin-dependent kinases. Leukemia 16(3):299–305

    Article  CAS  PubMed  Google Scholar 

  • Wan Y et al (2004) Synthesis and target identification of hymenialdisine analogs. Chem Biol 11(2):247–259

    Article  CAS  PubMed  Google Scholar 

  • Zeidner JF, Karp JE (2015) Clinical activity of alvocidib (flavopiridol) in acute myeloid leukemia. Leuk Res 39(12):1312–1318

    Article  CAS  PubMed  Google Scholar 

  • Zhang M et al (2021) CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 11(5):1913

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, M.A., Mir, U.Y. (2023). Targeting CDKs with Other Chemotherapeutic Drugs: A Combinatorial Approach. In: Mir, M. (eds) Therapeutic potential of Cell Cycle Kinases in Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-8911-7_13

Download citation

Publish with us

Policies and ethics

Navigation