Prospects, Pitfalls, and Opportunities for Human Static Magnetic Field Therapy

  • Chapter
  • First Online:
Biological Effects of Static Magnetic Fields

Abstract

This chapter provides an overview of the prospects of using electromagnetic fields (EMFs), with a specific focus on static magnetic fields, for treatment of human disease. The information provided covers the underlying basis for widespread skepticism surrounding “magnetotherapy”—which in part is deserved based on overinflated claims by its practitioners over the past two centuries (or even longer). On the other hand, a compelling scientific foundation is in place to propel nascent efforts to use magnetotherapy from a questionable niche medical practice into the mainstream; a goal of this chapter is to provide a summary of this information using specific (but non-comprehensive) examples of human ailments that are expected (based on current information) to benefit from magnetic field treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anonymous (2011) Guidance for industry and FDA staff—class II special controls guidance document: repetitive transcranial magnetic stimulation (rTMS) systems. US Food and Drug Administration Document number 1728. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm265269.htm

  • Anonymous (2015) General wellness: policy for low risk devices—guidance for industry and Food and Drug Administration staff. U.S. Food and Drug Administration Document number 1300013: http://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm429674.pdf

  • Anonymous (2016) Information for patients. International Society for Magnetic Resonance in Medicine. http://www.ismrm.org/resources/information-for-patients/

  • Asashima M, Shimada K, Pfeiffer CJ (1991) Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster. Bioelectromagnetics 12:215–224

    Article  CAS  PubMed  Google Scholar 

  • Baek S, Choi H, Park H, Cho B, Kim S, Kim J (2019) Effects of a hypomagnetic field on DNA methylation during the differentiation of embryonic stem cells. Sci Rep 9(1):1333. https://doi.org/10.1038/s41598-018-37372-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett CA, Pawluk RJ, Pilla AA (1974a) Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann N Y Acad Sci 238:242–262

    Article  CAS  PubMed  Google Scholar 

  • Bassett CA, Pawluk RJ, Pilla AA (1974b) Augmentation of bone repair by inductively coupled electromagnetic fields. Science 184(4136):575–577

    Article  CAS  PubMed  Google Scholar 

  • Binhi VN, Sarimov RM (2009) Zero magnetic field effect observed in human cognitive processes. Electromagn Biol Med 28:310–315

    Article  CAS  PubMed  Google Scholar 

  • Blackman CF (2012) Treating cancer with amplitude-modulated electromagnetic fields: a potential paradigm shift, again? Br J Cancer 106(2):241–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss VL, Heppner FH (1976) Circadian activity rhythm influenced by near zero magnetic field. Nature 261(5559):411–412

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Nissou MF, Benabid AL, Verna JM (2000) Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 283:193–196

    Article  CAS  PubMed  Google Scholar 

  • Bonlie DR (2001) Treatment using oriented unidirectional DC magnetic field. U.S.P. Office United States 6210317

    Google Scholar 

  • Braganza LF, Blott BH, Coe TJ, Melville D (1984) The superdiamagnetic effect of magnetic fields on one and two component multilamellar liposomes. Biochim Biophys Acta 801(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Byrd D, Mackey S (2008) Pulsed radiofrequency for chronic pain. Curr Pain Headache Rep 12(1):37–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter CS, Huang SC, Searby CC, Cassaidy B, Miller MJ, Grzesik WJ, Piorczynski TB, Pak TK, Walsh SA, Acevedo M, Zhang Q, Mapuskar KA, Milne GL, Hinton AO, Guo D-F, Weiss R, Bradberry K, Taylor EB, Rauckhorst AJ, Dick DW, Akurathi V, Falls-Hubert KC, Wagner BA, Carter WA, Wang K, Norris AW, Rahmouni K, Buettner GR, Hansen JM, Spitz DR, Abel ED, Sheffield VC (2020) Exposure to static magnetic and electric fields treats type 2 diabetes. Cell Metab 32(4):561–574. https://doi.org/10.1016/j.cmet.2020.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choleris E, Del Seppia C, Thomas AW, Luschi P, Ghione G, Moran GR, Prato FS (2002) Shielding, but not zeroing of the ambient magnetic field reduces stress-induced analgesia in mice. Proc Biol Sci 269(1487):193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colbert AP, Markov MS, Souder JJ (2007) Static magnetic field therapy: dosimetry considerations. J Altern Complement Med 14(5):577–582

    Article  Google Scholar 

  • Colbert A, Markov M, Sauder J (2009) Static magnetic field therapy: methodological challenges to conducting clinical trials. Environmentalist 29(2):177–185

    Article  Google Scholar 

  • Croarkin PE, MacMaster FP (2019) Transcranial magnetic stimulation for adolescent depression. Child Adolesc Psychiatr Clin N Am 28(1):33–43. https://doi.org/10.1016/j.chc.2018.07.003

    Article  PubMed  Google Scholar 

  • da Costa CC, Martins LA, Koth AP, Ramos JM, Guma FT, de Oliveira CM, Pedra NS, Fischer G, Helena ES, Gioda CR, Sanches PR, Junior AS, Soares MS, Spanevello RM, Gamaro GD, de Souza IC (2021) Static magnetic stimulation induces changes in the oxidative status and cell viability parameters in a primary culture model of astrocytes. Cell Biochem Biophys 79(4):873–885. https://doi.org/10.1007/s12013-021-01015-7

    Article  CAS  PubMed  Google Scholar 

  • De Vocht F, Stevens T, van Wendel-de-Joode B, Engels H, Kromhout H (2006) Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure–response relations. J Magn Reson Imaging 23:291–297

    Article  PubMed  Google Scholar 

  • Del Seppia C, Ghione S, Luschi P, Ossenkopp KP, Choleris E, Kavaliers M (2007) Pain perception and electromagnetic fields. Neurosci Biobehav Rev 31(4):619–642

    Article  PubMed  Google Scholar 

  • Dileone M, Carrasco-López MC, Segundo-Rodriguez JC, Mordillo-Mateos L, López-Ariztegui N, Alonso-Frech F, Catalan-Alonso MJ, Obeso JA, Oliviero A, Foffani G (2017) Dopamine-dependent changes of cortical excitability induced by transcranial static magnetic field stimulation in parkinson’s disease. Sci Rep 7(1):1–7. https://doi.org/10.1038/s41598-017-04254-y

    Article  CAS  Google Scholar 

  • Eccles R (2002) The powerful placebo in cough studies? Pulmon Pharmacol Ther 15(3):303–308

    Article  CAS  Google Scholar 

  • Elshiwi AM, Hamada HA, Mosaad D, Ragab IMA, Koura GM, Alrawaili SM (2019) Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial. Braz J Phys Ther 23(3):244–249. https://doi.org/10.1016/j.bjpt.2018.08.004

    Article  PubMed  Google Scholar 

  • Evans JA, Savitz DA, Kanal E, Gillen J (1993) Infertility and pregnancy outcome among magnetic resonance imaging workers. J Occup Med 35:1191–1195

    CAS  PubMed  Google Scholar 

  • Fesenko EE, Mezhevikina LM, Osipenko MA, Gordon RY, Khutzian SS (2010) Effect of the “zero” magnetic field on early embryogenesis in mice. Electromagn Biol Med 29:1–8

    Article  PubMed  Google Scholar 

  • Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, Scherberich A (2019) Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adiposederived cells. Biomaterials 223:119468. https://doi.org/10.1016/j.biomaterials.2019.119468

    Article  CAS  PubMed  Google Scholar 

  • Garnaat SL, Yuan S, Wang H, Philip NS, Carpenter LL (2018) Updates on transcranial magnetic stimulation therapy for major depressive disorder. Psychiatr Clin North Am 41(3):419–431. https://doi.org/10.1016/j.psc.2018.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Gmitrov J, Ohkubo C, Okano H (2002) Effect of 0.25 T static magnetic field on microcirculation in rabbits. Bioelectromagnetics 3(3):224–229

    Article  Google Scholar 

  • Goodman JH (2005) Low frequency sine wave stimulation decreases the incidence of kindled seizures. In: Corcoran ME, Moshé SL (eds) Advances in behavioral biology. Springer, Boston, p 55

    Google Scholar 

  • Goodman JH, Berger RE, Tcheng TK (2005) Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 46(1):1–17

    Article  PubMed  Google Scholar 

  • Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123(5):858–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand E (2016) What and where are the body’s magnetometers? Science 352(6293):1510–1511

    Article  CAS  PubMed  Google Scholar 

  • Hartwig V, Giovannetti G, Vanello N, Lombardi M, Landini L, Simi S (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho SY, Chen IC, Chen YJ, Lee CH, Fu CM, Liu FC, Liou HH (2019) Static magnetic field induced neural stem/progenitor cell early differentiation and promotes maturation. Stem Cells Int 2019:8790176. https://doi.org/10.1155/2019/8790176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horgan J (2013) Psychiatrists, instead of being embarrassed by placebo effect, should embrace it, author says. Scientific American Cross-Check. https://blogs.scientificamerican.com/cross-check/psychiatrists-instead-of-being-embarrassed-by-placebo-effect-should-embrace-it-author-says/

  • Iglesias AH (2020) Transcranial magnetic stimulation as treatment in multiple neurologic conditions. Curr Neurol Neurosci Rep 20(1):1. https://doi.org/10.1007/s11910-020-1021-0

    Article  PubMed  Google Scholar 

  • Jiles DC (1998) Introduction to magnetism and magnetic materials, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kennedy WP (1961) The nocebo reaction. Med World 95:203–205

    CAS  PubMed  Google Scholar 

  • Kirimoto H, Tamaki H, Otsuru N, Yamashiro K, Onishi H, Nojima I, Oliviero A (2018) Transcranial static magnetic field stimulation over the primary motor cortex induces plastic changes in cortical nociceptive processing. Front Hum Neurosci 12:63. https://doi.org/10.3389/fnhum.2018.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Conforti L, Pun RY, Millhorn DE (1998) Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor. J Physiol 508:95–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuipers NT, Sauder CL, Ray CA (2007) Influence of static magnetic fields on pain perception and sympathetic nerve activity in humans. J Appl Physiol 102(4):1410–1415

    Article  PubMed  Google Scholar 

  • Lavis LD (2008) Ester bonds in prodrugs. ACS Chem Biol 3(4):203–206

    Article  CAS  PubMed  Google Scholar 

  • Lefaucheur JP, André-Obadia N, Antal A, Ayache S, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125(11):2150–2206

    Article  PubMed  Google Scholar 

  • Lew W-Z, Feng S-W, Lee S-Y, Huang H-M (2021) The review of bioeffects of static magnetic fields on the oral tissue-derived cells and its application in regenerative medicine. Cell 10(10):2662. https://doi.org/10.3390/cells10102662

    Article  CAS  Google Scholar 

  • Lipowski A, Lipowska D (2006) Long-term evolution of an ecosystem with spontaneous periodicity of mass extinctions. Theory Biosci 125(1):67–77

    Article  PubMed  Google Scholar 

  • Macklis R (1993) Magnetic healing, quackery and the debate about the health effects of electromagnetic fields. Ann Med 118(5):376–383

    CAS  Google Scholar 

  • Markov MS (2009) What need to be known about the therapy with static magnetic fields. Environmentalist 29:169–176

    Article  Google Scholar 

  • Markov MS (2014) Electromagnetic fields and life. J Electr Electron Syst 3:119

    Article  Google Scholar 

  • Martel GF, Andrews SC, Roseboom CG (2002) Comparison of static and placebo magnets on resting forearm blood flow in young, healthy men. J Orthop Sports Phys Ther 32(10):518–524

    Article  PubMed  Google Scholar 

  • Martiny K, Lunde M, Bech P (2010) Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression. Biol Psychiatry 68(2):163–169

    Article  PubMed  Google Scholar 

  • Marycz K, Kornicka K, Röcken M (2018) Static Magnetic Field (SMF) as a regulator of stem cell fate – new perspectives in regenerative medicine arising from an underestimated tool. Stem Cell Rev Rep 14(6):785–792. https://doi.org/10.1007/s12015-018-9847-4

    Article  CAS  PubMed  Google Scholar 

  • Mayrovitz HN, Groseclose EE (2005) Effects of a static magnetic field of either polarity on skin microcirculation. Microvasc Res 69(1–2):24–27

    Article  PubMed  Google Scholar 

  • Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, Li Z, Liu S (2007) Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci 25:509–514

    Article  CAS  PubMed  Google Scholar 

  • Mo WC, Liu Y, Cooper HM, He RQ (2012) Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics 33:238–246

    Article  CAS  PubMed  Google Scholar 

  • Mohajer JK, Nisbet A, Velliou E, Ajaz M, Schettino G (2019) Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. Br J Radiol 92(1094):20180484. https://doi.org/10.1259/bjr.20180484

    Article  PubMed  Google Scholar 

  • Mori N, Schmitt D, Wicht J, Ferriz-Mas A, Mouri H, Nakamichi A, Morikawa M (2013) Domino model for geomagnetic field reversals. Phys Rev E 87(1):012108

    Article  CAS  Google Scholar 

  • Morris CE, Skalak TC (2007) Chronic static magnetic field exposure alters microvessel enlargement resulting from surgical intervention. J Appl Phys 103(2):629–636

    Google Scholar 

  • Mourino MR (1991) From Thales to Lauterbur, or from the lodestone to MR imaging: magnetism and medicine. Radiology 180(3):593–612

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Ohkubo C (2001) Modulatory effects of static magnetic fields on blood pressure in rabbits. Bioelectromagnetics 22:408–418

    Article  CAS  PubMed  Google Scholar 

  • Palermo E (2015) Does magnetic therapy work? Live Science. http://www.livescience.com/40174-magnetic-therapy.html

  • Philip NS, Barredo J, Aiken E, Larson V, Jones RN, Shea MT, Greenberg BD, van 't Wout-Frank, M. (2019) Theta-burst transcranial magnetic stimulation for posttraumatic stress disorder. Am J Psychiatry 176(11):939–948. https://doi.org/10.1176/appi.ajp.2019.18101160

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad A, Teh DBL, Blasiak A, Chai C, Wu Y, Gharibani PM, Yang IH, Phan TT, Lim KL, Yang H, Liu X, All AH (2017) Static magnetic field stimulation enhances oligodendrocyte differentiation and secretion of neurotrophic factors. Sci Rep 7(1):6743. https://doi.org/10.1038/s41598-017-06331-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prato FS, Robertson JA, Desjardins D, Hensel J, Thomas AW (2005) Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics 26(2):109–117

    Article  PubMed  Google Scholar 

  • Rivadulla C, Aguilar J, Coletti M, Aguila J, Prieto S, Cudeiro J (2018) Static magnetic fields reduce epileptiform activity in anesthetized rat and monkey. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-33808-x

    Article  CAS  Google Scholar 

  • Rose REC, Bryan-Frankson BA (2008) Is there still a role for pulsed electromagnetic field in the treatment of delayed unions and nonunions. Internet J Orthop Surg 10(1):e5574. https://doi.org/10.5580/e5574

    Article  Google Scholar 

  • Ross CL, Ang DC, Almeida-Porada G (2019) Targeting mesenchymal stromal cells/pericytes (mscs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front Immunol 10:266. https://doi.org/10.3389/fimmu.2019.00266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadri M, Abdolmaleki P, Abrun S, Beiki B, Samani FS (2017) Static magnetic field effect on cell alignment, growth, and differentiation in human cord-derived mesenchymal stem cells. Cell Mol Bioeng 10(3):249–262. https://doi.org/10.1007/s12195-017-0482-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19

    Article  CAS  PubMed  Google Scholar 

  • Scott E, Steward WP, Gescher AJ, Brown K (2012) Resveratrol in human cancer chemoprevention—choosing the ‘right’ dose. Mol Nutr Food Res 56(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci U S A 98:113–118

    Article  CAS  PubMed  Google Scholar 

  • Steyn PF, Ramey DW, Kirschvink J, Uhrig J (2000) Effect of a static magnetic field on blood flow to the metacarpus in horses. J Am Vet Med Assoc 2000(217):6

    Google Scholar 

  • Taga T, Fukuda S (2006) Role of IL-6 in the neural stem cell differentiation. Clin Rev Allergy Immunol 28(3):249–256

    Article  Google Scholar 

  • Takahashi RN, Pamplona FA, Prediger RDS (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632

    Article  CAS  PubMed  Google Scholar 

  • Tucker RD, Schmitt OH (1978) Tests for human perception of 60 Hz moderate strength magnetic fields. IEEE Trans Biomed Eng 25(6):509–518

    Article  CAS  PubMed  Google Scholar 

  • Varani K, Vincenzi F, Pasquini S, Blo I, Salati S, Cadossi M, De Mattei M (2021) Pulsed electromagnetic field stimulation in osteogenesis and chondrogenesis: signaling pathways and therapeutic implications. Int J Mol Sci 22(2):809. https://doi.org/10.3390/ijms22020809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan GJ, Jiang SL, Zhao ZC, Xu JJ, Tao XR, Sword GA, Gao YB, Pan WD, Chen FJ (2014) Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. J Insect Physiol 68:7–15

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Sarje A, Che P-L, Yarema KJ (2009) Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 4(10):356

    Article  Google Scholar 

  • Wang Z, Che P-L, Du J, Ha B, Yarema KJ (2010) Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One 5(11):e13883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, **ang B, Deng J, Lin H-Y, Zheng D, Freed DH, Arora RC, Tian G (2016) Externally applied static magnetic field enhances cardiac retention and functional benefit of magnetically iron-labeled adipose-derived stem cells in infarcted hearts. Stem Cells Transl Med 5(10):1380–1393. https://doi.org/10.5966/sctm.2015-0220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weintraub M (1999) Magnetic biostimulation in painful peripheral neuropathy: a novel intervention—a randomized, double-placebo crossover study. Am J Pain Manag 9:8–17

    Google Scholar 

  • Wever R (1970) The effects of electric fields on circadian rhythmicity in men. Life Sci Space Res 8:177–187

    CAS  PubMed  Google Scholar 

  • Wu D, Kang L, Tian J, Wu Y, Liu J, Li Z, Wu X, Huang Y, Gao B, Wang H, Wu Z, Qiu G (2020) Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine 15:7979–7993. https://doi.org/10.2147/IJN.S275650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, Qiu G, Wu Z (2021) Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal mir-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol 19(1):1–19. https://doi.org/10.1186/s12951-021-00958-6

    Article  CAS  Google Scholar 

  • Xu S, Okano H, Ohkubo C (1998) Subchronic effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 12(4):383–389

    CAS  PubMed  Google Scholar 

  • Xu ML, Wang XB, Li B, Li DF, Jiang JC (2003) Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space. Chin Sci Bull 48:2454–2457

    Google Scholar 

  • Yun H-M, Ahn S-J, Park K-R, Kim M-J, Kim J-J, ** G-Z, Kim H-W, Kim E-C (2016) Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85:88–98. https://doi.org/10.1016/j.biomaterials.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Red blood cell magnetophoresis. Biophys J 84(4):2638–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Lu H, ** W, Zhou X, Xu S, Zhang K, Jiang J, Li Y, Guo A (2004) Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci Lett 371(2–3):190–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li JF, Wu QJ, Li B, Jiang JC (2007) Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster. Bioelectromagnetics 28:155–158

    Article  PubMed  Google Scholar 

  • Zhang Y, Cao L, Varga V, **g M, Karadas M, Li Y, Buzsáki G (2021) Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proc Natl Acad Sci U S A 118(15):e2016432118. https://doi.org/10.1073/pnas.2016432118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman JW, Pennison MJ, Brezovich I, Yi N, Yang C, Ramaker R, Absher D, Myers RM, Kuster N, Costa FP, Barbault A, Pasche B (2012) Cancer cell proliferation is inhibited by specific modulation frequencies. Br J Cancer 2012(106):307–313

    Article  Google Scholar 

  • Zyss T (2008) Magnetotherapy. Neuro Endocrinol Lett 29(Suppl 1):161–201

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Yarema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Epler, P., Yarema, K.J. (2023). Prospects, Pitfalls, and Opportunities for Human Static Magnetic Field Therapy. In: Zhang, X. (eds) Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-19-8869-1_15

Download citation

Publish with us

Policies and ethics

Navigation