Polyhydroxyalkanoate-Based Sensors and Their Applications

  • Chapter
  • First Online:
Biomaterials-Based Sensors
  • 461 Accesses

Abstract

Polyhydroxyalkanoates (PHA) are unique polyester of microbial origin with features equivalent to synthetic plastics. Its thermoplastic, biodegradable, biocompatible, and nontoxic characteristic makes it a suitable biopolymer for various sectors of modern sciences and industry, including biomedical and related applications. The physical properties of PHA can be tuned by changing its monomeric units (hydroxyl acids) and/or modifying the flexible R-group present within the monomers. Thus, the PHA polymer can have broad crystallinity, optical, and piezoelectric activities that can be customized. Recent advancements in industrial manufacturing techniques led to the utilization of PHA polymers in sensing applications and develo** microelectronic devices. Sensing devices based on PHA polymer along with other composite materials have been used to detect gases, volatile organic compounds, Urea, H2O2, antibiotics, body fluids, and live microorganisms. In addition, PHA-based devices also found their role as triboelectric nanogenerators, time-temperature indicators, strain sensors, chemosensors, and pressure sensors. In this chapter, these unique applications of PHA in sensing applications will be discussed, along with the recent advancements and associated challenges. The PHA polymers are great alternatives for miniaturized electronic devices with lower ecological impact, and with recent developments in biocomposite fabrication. Soon the PHA-based sensors will find their place in our daily lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar P, Kim BS. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Bioresour Technol. 2018;269:544–56.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar P, Ray S, Patel SK, Lee JK, Kalia VC. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. 2015;78:9–16.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar P, Patel SK, Lee JK, Kalia VC. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv. 2013;31(8):1543–61.

    Article  CAS  PubMed  Google Scholar 

  4. Singh M, Kumar P, Ray S, Kalia VC. Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol. 2015;55(3):235–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stojanović GM, Nikodinović-Runić J, Švenderman S, Kojić T, Radovanović M, Mikov M, Randjelović D. Comprehensive characterization of elastomeric polyhydroxyalkanoate and its sensor applications. Mat Sci Eng C. 2020;115:111091.

    Article  Google Scholar 

  6. Poltronieri P, Kumar P. Polyhydroxyalkanoates (PHAs) in industrial applications. In: Handbook of ecomaterials. Vol. 4. 2017. p. 2843–72.

    Google Scholar 

  7. Kumar P, Kim BS. Paracoccus sp. strain LL1 as a single cell factory for the conversion of waste cooking oil to polyhydroxyalkanoates and carotenoids. Appl Food Biotechnol. 2019;6(1):53–60.

    CAS  Google Scholar 

  8. Kumar P, Maharjan A, Jun HB, Kim BS. Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: challenges and opportunities. Biotechnol Appl Biochem. 2019;66(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar P, Ray S, Kalia VC. Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol. 2016;200:413–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC. Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol. 2015;55(1):1–7.

    Article  CAS  Google Scholar 

  11. Singh M, Kumar P, Patel SK, Kalia VC. Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol. 2013;53(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  12. Brojanigo S, Alvarado-Morales M, Basaglia M, Casella S, Favaro L, Angelidaki I. Innovative co-production of polyhydroxyalkanoates and methane from broken rice. Sci Total Environ. 2022;825:153931.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar P, Jun HB, Kim BS. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. Int J Biol Macromol. 2018;107:2552–8.

    Article  CAS  PubMed  Google Scholar 

  14. Li T, Elhadi D, Chen GQ. Co-production of microbial polyhydroxyalkanoates with other chemicals. Metab Eng. 2017;43:29–36.

    Article  PubMed  Google Scholar 

  15. Arumugam A, Sandhya M, Ponnusami V. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake. Bioresour Technol. 2014;164:170–6.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar P, Singh M, Mehariya S, Patel SK, Lee JK, Kalia VC. Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol. 2014;54(2):151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel SK, Kumar P, Singh M, Lee JK, Kalia VC. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol. 2015;176:136–41.

    Article  CAS  PubMed  Google Scholar 

  18. Patel SK, Singh M, Kumar P, Purohit HJ, Kalia VC. Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy. 2012;36:218–25.

    Article  CAS  Google Scholar 

  19. dos Santos RR, Corrêa PS, Dantas FML, Teixeira CMLL. Evaluation of the co-production of total carotenoids, C-phycocyanin and polyhydroxyalkanoates by Arthrospira platensis. Bioresour Technol Rep. 2019;7:100226.

    Article  Google Scholar 

  20. Kumar P, Chandrasekhar K, Kumari A, Sathiyamoorthi E, Kim BS. Electro-fermentation in aid of bioenergy and biopolymers. Energies. 2018;11(2):343.

    Article  Google Scholar 

  21. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, Hatti-Kaul R. Metabolic potential of the moderate halophile Yangia sp. ND199 for co-production of polyhydroxyalkanoates and exopolysaccharides. Microbiologyopen. 2021;10(1):e1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kelwick RJ, Webb AJ, Wang Y, Heliot A, Allan F, Emery AM, et al. AL-PHA beads: bioplastic-based protease biosensors for global health applications. Mater Today. 2021;47:25–37.

    Article  CAS  Google Scholar 

  23. Chernozem RV, Romanyuk KN, Grubova I, Chernozem PV, Surmeneva MA, Mukhortova YR, et al. Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering. Nano Energy. 2021;89:106473.

    Article  CAS  Google Scholar 

  24. Obeso CG, Sousa MP, Song W, Rodriguez-Pérez MA, Bhushan B, Mano JF. Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates. Colloids Surf A Physicochem Eng Asp. 2013;416:51–5.

    Article  Google Scholar 

  25. Valentini L, Cardinali M, Kenny J. Flexible triboelectric generator and pressure sensor based on poly [(R)-3-hydroxybutyric acid] biopolymer. J Polym Sci B Polym Phys. 2014;52(13):859–63.

    Article  CAS  Google Scholar 

  26. Zhu G, Pan C, Guo W, Chen CY, Zhou Y, Yu R, Wang ZL. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012;12(9):4960–5.

    Article  CAS  PubMed  Google Scholar 

  27. Anbukarasu P, Sauvageau D, Elias AL. Time-temperature indicator based on enzymatic degradation of dye-loaded polyhydroxybutyrate. Biotechnol J. 2017;12(9):1700050.

    Article  Google Scholar 

  28. Dan L, Pope MA, Elias AL. Solution-processed conductive biocomposites based on polyhydroxybutyrate and reduced graphene oxide. J Phys Chem C. 2018;122(30):17490–500.

    Article  CAS  Google Scholar 

  29. Avossa J, Paolesse R, Di Natale C, Zampetti E, Bertoni G, De Cesare F, et al. Electrospinning of polystyrene/polyhydroxybutyrate nanofibers doped with porphyrin and graphene for chemiresistor gas sensors. Nanomaterials. 2019;9(2):280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dan L, Elias AL. Flexible and stretchable temperature sensors fabricated using solution-processable conductive polymer composites. Adv Healthc Mater. 2020;9(16):2000380.

    Article  CAS  Google Scholar 

  31. Zheng Q, Zou Y, Zhang Y, Liu Z, Shi B, Wang X, et al. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv. 2016;2(3):e1501478.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma X, Yang R, Li G. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized in poly-3-hydroxybutyrate film. Am J Biochem Biotechnol. 2005;1(1):43–6.

    Article  CAS  Google Scholar 

  33. Ma X, Liu X, **ao H, Li G. Direct electrochemistry and electrocatalysis of hemoglobin in poly-3-hydroxybutyrate membrane. Biosens Bioelectron. 2005;20(9):1836–42.

    Article  CAS  PubMed  Google Scholar 

  34. Slaugther G. A gold interdigitated microelectrodes fabricated on polyhydroxybutyrate substrate for the determination of urea using impedimetric measurements. IEEE Sensors J. 2012;12(4):821–6.

    Article  CAS  Google Scholar 

  35. Macagnano A, Perri V, Zampetti E, Bearzotti A, De Cesare F. Humidity effects on a novel eco-friendly chemosensor based on electrospun PANi/PHB nanofibres. Sensors Actuators B Chem. 2016;232:16–27.

    Article  CAS  Google Scholar 

  36. Moore TL, Aburime SA, Wilson TA, Giannelis EP, Batt CA. Nanofabrication of biodegradable enzyme-based glucose and organophosphorus pesticide biosensors. In: Proceedings of the 2002 National Conference on Environmental Science and Technology, Greensboro, North Carolina, USA, 8–10 Sept 2002. Battelle Press; 2003. p. 225–32.

    Google Scholar 

  37. Phukon P, Radhapyari K, Konwar BK, Khan R. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin. Mater Sci Eng C. 2014;37:314–20.

    Article  CAS  Google Scholar 

  38. Park TJ, Lee SY. A research and application of polyhydroxyalkanoates in biosensor chip. KSBB J. 2007;22(6):371–7.

    Google Scholar 

  39. Hosseini S, Azari P, Jiménez-Moreno MF, Rodriguez-Garcia A, **guan-Murphy B, Madou MJ, Martínez-Chapa SO. Polymethacrylate coated electrospun PHB fibers as a functionalized platform for bio-diagnostics: confirmation analysis on the presence of immobilized IgG antibodies against Dengue virus. Sensors. 2017;17(10):2292.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen SY, Harrison M, Ng EK, Sauvageau D, Elias A. Immobilized reporter phage on electrospun polymer fibers for improved capture and detection of Escherichia coli O157: H7. ACS Food Sci Technol. 2021;1(6):1085–94.

    Article  CAS  Google Scholar 

  41. Anbukarasu P, Sauvageau D, Elias A. The effects of solvent casting temperature and physical aging on polyhydroxybutyrate-graphene nanoplatelet composites. Polym Compos. 2021;42(3):1451–61.

    Article  CAS  Google Scholar 

  42. Sahiner N, Demirci S. The use of graphene oxide-embedded superporous poly(2-hydroxyethylmethacrylate) cryogels for p(aniline) conductive polymer synthesis and their use in sensor applications. Mater Des. 2017;120:47–55.

    Article  CAS  Google Scholar 

  43. Avossa J, Zampetti E, De Cesare F, Bearzotti A, Scarascia-Mugnozza G, Vitiello G, et al. Thermally driven selective nanocomposite PS-PHB/MGC nanofibrous conductive sensor for air pollutant detection. Front Chem. 2018;6:432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meng X, Tongay S, Kang J, Chen Z, Wu F, Li SS, et al. Stable p-and n-type do** of few-layer graphene/graphite. Carbon. 2013;57:507–14.

    Article  CAS  Google Scholar 

  45. Vallejo-Giraldo C, Pugliese E, Larrañaga A, Fernandez-Yague MA, Britton JJ, Trotier A, et al. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine. 2016;11(19):2547–63.

    Article  CAS  PubMed  Google Scholar 

  46. Cai Z, **ong P, He S, Zhu C. Improved piezoelectric performances of highly orientated poly (β-hydroxybutyrate) electrospun nanofiber membrane scaffold blended with multiwalled carbon nanotubes. Mater Lett. 2019;240:213–6.

    Article  CAS  Google Scholar 

  47. Dan L, Cheng Q, Narain R, Krause B, Pötschke P, Elias A. Three-dimensional printed and biocompatible conductive composites comprised of polyhydroxybutyrate and multiwalled carbon nanotubes. Ind Eng Chem Res. 2021;60(2):885–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author wishes to thank Sharda University for providing the necessary facility and moral support to write this chapter. This work was supported by the institutional seed fund funded by Sharda University (SU/SF/2022/04).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, S., Kumari, A., Sonkar, M., Kumar, P. (2023). Polyhydroxyalkanoate-Based Sensors and Their Applications. In: Kumar, P., Dash, S.K., Ray, S., Parween, S. (eds) Biomaterials-Based Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-19-8501-0_7

Download citation

Publish with us

Policies and ethics

Navigation