Tensile Creep of Early-Age Internally Cured Concrete with SAPs

  • Chapter
  • First Online:
Cracking Control on Early-Age Concrete Through Internal Curing
  • 104 Accesses

Abstract

The tensile creep is an inherent viscoelastic property of concrete, and can relieve approximately 50% of the restrained stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander S (2006) Creep, shrinkage and cracking of restrained concrete at early age. Concrete 40(2):38–39

    Google Scholar 

  2. Nguyen DH, Dao V, Lura P (2017) Tensile properties of concrete at very early ages. Constr Build Mater 134:563–573

    Article  Google Scholar 

  3. Briffaut M, Benboudjema F, Torrenti JM et al (2012) Concrete early age basic creep: experiments and test of rheological modelling approaches. Constr Build Mater 36:373–380

    Article  Google Scholar 

  4. Zhu H, Li Q, Hu Y et al (2018) Double feedback control method for determining early-age restrained creep of concrete using a temperature stress testing machine. Materials 11:1079

    Article  Google Scholar 

  5. Bentz DP, Snyder KA (1999) Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate. Cem Concr Res 29(11):1863–1867

    Article  Google Scholar 

  6. Bažant ZP, Baweja S (1995) Creep and shrinkage prediction model for analysis and design of concrete structures: model B3. Mater Struct 28(6):357–365

    Article  Google Scholar 

  7. Xu Y, Liu J, Liu J et al (2019) Creep at early ages of ultrahigh-strength concrete: experiment and modelling. Mag Concr Res 71(16):847–859

    Article  Google Scholar 

  8. Gu CP, Wang YC, Gao F et al (2019) Early age tensile creep of high performance concrete containing mineral admixtures: experiments and modeling. Constr Build Mater 197:766–777

    Google Scholar 

  9. Aly T, Sanjayan JG (2008) Shrinkage cracking properties of slag concretes with one-day curing. Mag Concr Res 60(1):41–48

    Google Scholar 

  10. Kovler K (1994) Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage. Mater Struct 27(6):324–330

    Article  Google Scholar 

  11. Shen DJ, Liu KQ, Ji Y et al (2018) Early-age residual stress and stress relaxation of high-performance concrete containing fly ash. Mag Concr Res 70(13–14):726–738

    Article  Google Scholar 

  12. Pigeon BM (1995) Tensile creep at early ages of ordinary, silica fume and fiber reinforced concretes. Cem Concr Res 25(5):1075–1085

    Article  Google Scholar 

  13. Garas VY, Kahn LF, Kurtis KE (2009) Short-term tensile creep and shrinkage of ultra-high performance concrete. Cem Concr Compos 31(3):147–152

    Article  Google Scholar 

  14. Ni TY, Yang Y, Gu CP et al (2019) Early-age tensile basic creep behavioral characteristics of high-strength concrete containing admixtures. Adv Civ Eng 2019(7):1–11

    Google Scholar 

  15. Jiang JL (2017) Experimental study on tensile creep of concrete internally cured with super absorbent polymers at early age. Hohai University, Nan**g

    Google Scholar 

  16. Liu KQ (2017) Experimental study on tensile creep of concrete internally cured with super absorbent polymers at early age. Hohai University, Nan**g

    Google Scholar 

  17. Shen DJ, Liu C, Jiang JL et al (2020) Influence of super absorbent polymers on early-age behavior and tensile creep of internal curing high strength concrete. Constr Build Mater 258:120068

    Article  Google Scholar 

  18. Shen DJ, Li CC, Liu C et al (2020) Experimental investigations on early-age tensile creep of internally cured high strength concrete under different initial stress/strength ratios. Constr Build Mater 265(5):120312

    Google Scholar 

  19. Shen DJ, Li CC, Kang JC et al (2022) Influence of loading ages on the early age tensile creep of high-strength concrete modified with superabsorbent polymers. J Mater Civ Eng 34(5):04022064

    Article  Google Scholar 

  20. Kolver K, Igarashi S, Bentur A (1999) Tensile creep behavior of high strength concretes at early ages. Mater Struct 32(5):383–387

    Article  Google Scholar 

  21. Shen DJ, Jiang JL, Shen JX et al (2015) Influence of prewetted lightweight aggregates on the behavior and cracking potential of internally cured concrete at an early age. Constr Build Mater 99:260–271

    Article  Google Scholar 

  22. Shen DJ, Liu XZ, Li Q et al (2019) Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber. Constr Build Mater 196:307–316

    Article  Google Scholar 

  23. Shen DJ, Jiao Y, Gao Y et al (2020) Influence of ground granulated blast furnace slag on cracking potential of high performance concrete at early age. Constr Build Mater 241:117839

    Article  Google Scholar 

  24. Ministry of Housing and Urban Rural Development of the People’s Republic of China (2019) Standard for test methods of concrete physical and mechanical properties: GB/T 50081-2019. China Architecture & Building Press, Bei**g. (in Chinese)

    Google Scholar 

  25. Kanstad T, Hammer TA, Bjontegaard O et al (2003) Mechanical properties of young concrete: Part I: experimental results related to test methods and temperature effects. Mater Struct 36(4):218–225

    Article  Google Scholar 

  26. Yoo DY, Park JJ, Kim SW et al (2014) Influence of ring size on the restrained shrinkage behavior of ultra high performance fiber reinforced concrete. Mater Struct 47(7):1161–1174

    Article  Google Scholar 

  27. Shen DJ, Liu XZ, Zeng X et al (2020) Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Constr Build Mater 244:117874

    Article  Google Scholar 

  28. Yang Y, Xu S, Ye D et al (2009) Tensile creep behavior of high strength concrete at early ages. J Chin Ceramic Soc 37(7):1124–1129 (in Chinese)

    Google Scholar 

  29. Zhang T, Qin WZ (2006) Tensile creep due to restraining stresses in high-strength concrete at early ages. Cem Concr Res 36(3):584–591

    Article  Google Scholar 

  30. Shen DJ, Jiang JL, Zhang MY et al (2018) Tensile creep and cracking potential of high performance concrete internally cured with super absorbent polymers at early age. Constr Build Mater 165:451–461

    Google Scholar 

  31. Khan I, Xu T, Castel A et al (2018) Early-age tensile creep and shrinkage induce cracking in internally restrained concrete members. Mag Concr Res 71(22):1–41

    Google Scholar 

  32. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (2018) Common portland cement: GB 175-2007/XG1-2018. Standard press of China, Bei**g. (in Chinese)

    Google Scholar 

  33. Beushausen H, Gillmer M (2014) The use of superabsorbent polymers to reduce cracking of bonded mortar overlays. Cem Concr Compos 52:1–8

    Article  Google Scholar 

  34. Li SC, Zhang YS, Zhang GR (2013) Study on tensile creep characteristics of high performance concrete. J Civ Archit Environ Eng 35(2):40–44 (in Chinese)

    Google Scholar 

  35. Kang SH, Hong SG, Moon J (2018) The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete. Constr Build Mater 172:29–40

    Article  Google Scholar 

  36. Ma XW, Zhang JK, Liu JH (2015) Review on superabsorbent polymer as internal curing agent of high performance cement-based material. J Chin Ceramic Soc 43(8):1099–1110 (in Chinese)

    Google Scholar 

  37. Kong XM, Zhang ZL, Lu ZC (2015) Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete. Mater Struct 48(9):2741–2758

    Article  Google Scholar 

  38. Olawuyi BJ, Boshoff WP (2017) Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis. Constr Build Mater 135:580–589

    Article  Google Scholar 

  39. Maou T (2013) Comparison of concrete creep in tension and in compression: influence of concrete age at loading and drying conditions. Cem Concr Res 51:78–84

    Article  Google Scholar 

  40. Esteves LP, Lukošiūtė I, Čėsnienė J (2014) Hydration of cement with superabsorbent polymers. J Therm Anal Calorim 118(2):1385–1393

    Article  Google Scholar 

  41. Wang LA, Guo L, Guo LX (2014) Sensitivity analysis of impact factors of concrete tensile creep at early ages. J Build Mater 17(5):896–900

    Google Scholar 

  42. Sellevold EJ, Bjntegaard Ø (2006) Coefficient of thermal expansion of cement paste and concrete: mechanisms of moisture interaction. Mater Struct 39(9):809–815

    Google Scholar 

  43. Sant G (2012) The influence of temperature on autogenous volume changes in cementitious materials containing shrinkage reducing admixtures. Cem Concr Compos 34(7):855–865

    Article  Google Scholar 

  44. Reinhardt HW, Rinder T (2006) Tensile creep of high-strength concrete. J Adv Concr Technol 4(2):277–283

    Article  Google Scholar 

  45. Forth JP (2015) Predicting the tensile creep of concrete. Cem Concr Compos 55:70–80

    Article  Google Scholar 

  46. Bissonnette B, Pigeon M, Vaysburd AM (2007) Tensile creep of concrete: study of its sensitivity to basic parameters. ACI Mater J 104(4):360–368

    Google Scholar 

  47. Østergaard L, Lange DA, Altoubat SA et al (2001) Tensile basic creep of early-age concrete under constant load. Cem Concr Res 31(12):1895–1899

    Article  Google Scholar 

  48. Zhao ZE, Wang KJ, Lange DA et al (2019) Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age. Cem Concr Compos 99:191–202

    Article  Google Scholar 

  49. Snoeck D, Schaubroeck D, Dubruel P et al (2014) Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr Build Mater 72:148–157

    Google Scholar 

  50. Klemm AJ, Sikora KS (2013) The effect of superabsorbent polymers (SAP) on microstructure and mechanical properties of fly ash cementitious mortars. Constr Build Mater 49:134–143

    Article  Google Scholar 

  51. Luczynski KW, Brynk T, Ostrowska B et al (2013) Consistent quasistatic and acoustic elasticity determination of poly-l-lactide-based rapid-prototyped tissue engineering scaffolds. J Biomed Mater Res Part A 101:138–144

    Article  Google Scholar 

  52. Luczynski KW, Steiger-Thirsfeld A, Bernardi J et al (2015) Extracellular bone matrix exhibits hardening elastoplasticity and more than double cortical strength: Evidence from homogeneous compression of non-tapered single micron-sized pillars welded to a rigid substrate. J Mech Behav Biomed Mater 52:51–62

    Article  Google Scholar 

  53. Karte P, Hlobil M, Reihsner R et al (2015) Unloading-based stiffness characterisation of cement pastes during the second, third and fourth day after production. Strain 51(2):156–169

    Article  Google Scholar 

  54. Abdel-Wahab AA, Alam K, Silberschmidt VV (2011) Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. J Mech Behav Biomed Mater 4(5):807–820

    Article  Google Scholar 

  55. Yang CY (2015) Investigation on tensile creep of high strength/high performance concrete containing blast furnace slag at early ages. Zhejiang University of Technology, Hangzhou

    Google Scholar 

  56. Assmann A, Reinhardt HW (2014) Tensile creep and shrinkage of SAP modified concrete. Cem Concr Res 58:179–185

    Article  Google Scholar 

  57. Kamen A, Denarié E, Sadouki H et al (2008) UHPFRC tensile creep at early age. Mater Struct 42(1):113–122

    Article  Google Scholar 

  58. Altoubat SA, Lange DA (2001) Tensile basic creep: measurements and behavior at early age. ACI Mater J 98(5):386–393

    Google Scholar 

  59. Ranaivomanana N, Multon S, Turatsinze A (2013) Tensile, compressive and flexural basic creep of concrete at different stress levels. Cem Concr Res 52:1–10

    Article  Google Scholar 

  60. Atrushi DS (2003) Tensile and compressive creep of young concrete: testing and modelling. The Norwegian University of Science and Technology

    Google Scholar 

  61. Neville AM, Brooks JJ (1987) Concrete technology. Longman Scientific & Technical, England

    Google Scholar 

  62. Han B, **e HB, Zhu L et al (2017) Nonlinear model for early age creep of concrete under compression strains. Constr Build Mater 147:203–211

    Article  Google Scholar 

  63. Hsu T, Slate FO, Sturman GM et al (1963) Microcracking of plain concrete and the shape of the stress-strain curve. J ACI 60(2):09–224

    Google Scholar 

  64. Ngab AS, Slate FO, Nilson AH (1981) Microcracking and time-dependent strains in high strength concrete. ACI Struct J 78(4):262–268

    Google Scholar 

  65. Bažant ZP, Hubler MH, Wendner R et al (2015) Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability. TC-242-MDC multidecade creep and shrinkage of concrete: material model and structural analysis. Mater Struct 48:753–770

    Google Scholar 

  66. Hilaire A, Benboudjema F, Darquennes A et al (2014) Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl Eng Des 269:222–230

    Article  Google Scholar 

  67. Zheng XY, Ji T, Easa SM et al (2019) Tensile basic creep behavior of lightweight aggregate concrete reinforced with steel fiber. Constr Build Mater 200:356–367

    Article  Google Scholar 

  68. Delsaute B, Boulay C, Staquet S (2016) Creep testing of concrete since setting time by means of permanent and repeated minute-long loadings. Cem Concr Compos 73:75–88

    Article  Google Scholar 

  69. Moradian M, Ley MT, Grasley ZC (2018) Stress induced dissolution and time-dependent deformation of portland cement paste. Mater Des 157:314–325

    Article  Google Scholar 

  70. Li XD, Grasley ZC, Bullard JW et al (2018) Creep and relaxation of cement paste caused by stress-induced dissolution of hydrated solid components. J Am Ceram Soc 101(9):4237–4255

    Article  Google Scholar 

  71. Nestle N, Kühn A, Friedemann K et al (2009) Water balance and pore structure development in cementitious materials in internal curing with modified superabsorbent polymer studied by NMR. Microporous Mesoporous Mater 125(1–2):51–57

    Article  Google Scholar 

  72. Wei Y, Liang SM, Guo WQ et al (2017) Stress prediction in very early-age concrete subject to restraint under varying temperature histories. Cem Concr Compos 83:45–56

    Article  Google Scholar 

  73. Bažant ZP, Hauggaard A, Baweja S et al (1997) Microprestress solidification theory for concrete creep. I: aging and drying effects. J Eng Mech 123(11):1188–1194

    Google Scholar 

  74. Wei Y, Hansen W (2013) Tensile creep behavior of concrete subject to constant restraint at very early ages. J Mater Civ Eng:1277–1284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejian Shen .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, D. (2023). Tensile Creep of Early-Age Internally Cured Concrete with SAPs. In: Cracking Control on Early-Age Concrete Through Internal Curing. Springer, Singapore. https://doi.org/10.1007/978-981-19-8398-6_4

Download citation

Publish with us

Policies and ethics

Navigation