Nano-Based Therapies for Acute and Chronic Lung Diseases

  • Chapter
  • First Online:
Biotechnology Applied to Inflammatory Diseases

Abstract

Nanotechnology in medicine—known as nanomedicine—has opened a new era for accurate and precise diagnosis and treatment of pulmonary inflammatory diseases. This novel approach has developed into a broad range of preclinical and clinical applications. Nanoparticles can be designed and employed as drug delivery systems to defeat the limitations of current medical treatments and cross biological barriers, such as mucosa, microenvironmental, and cellular levels. Nano-drug delivery systems are able to improve drug stability, enhance drug solubility, minimize drug first-pass metabolism, and facilitation of controlled release of payload. The applications of nanotechnology in pulmonary inflammatory diseases provide numerous benefits compared to the traditional way of therapeutic agent administration. This novel strategy can be engineered for targeting specific site to deliver therapeutic agents to the desired tissues and cells in a more effective manner including higher level of bioavailability, less toxic side effects, and drug dose reduction. Another attractive application of nanotechnology in the diagnosis of pulmonary inflammatory diseases is nano-based sensors, known as nano-biosensors, which are extensively used for the molecular detection of biomarkers associated with the diagnosis and detection of pulmonary diseases. The surface area to volume ratio which is a unique feature of nanomaterials provides higher sensitivity and shorter response times compared to traditional method for detection. Nano-biosensors, also, offer attractive features such as specificity, ease of diagnostic procedures, and multiplexed measurement ability with high diagnostic accuracy ensuring accuracy of outcomes in high-throughput experiments. Therefore, it has been used for the early pulmonary inflammatory diseases’ diagnosis even before symptoms’ presentation. Unique properties of nanomaterials may help overcome traditional and current challenges for the treatment of lung inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abnoos M, Mohseni M, Mousavi SAJ, Ashtari K, Ilka R, Mehravi B (2018) Chitosan-alginate nano-carrier for transdermal delivery of pirfenidone in idiopathic pulmonary fibrosis. Int J Biol Macromol 118:1319–1325

    Article  CAS  PubMed  Google Scholar 

  • Ailiyaer Y, Wang X, Zhang Y, Li C, Li T, Qi Q, Li Y (2018) A prospective trial of nebulized amikacin in the treatment of bronchiectasis exacerbation. Respiration 95:327–333

    Article  CAS  PubMed  Google Scholar 

  • Almqvist N, Lönnqvist A, Hultkrantz S, Rask C, Telemo E (2008) Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma. Immunology 125:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson CF, Grimmett ME, Domalewski CJ, Cui H (2020) Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WIREs Nanomed Nanobiotechnol 12:e1586

    Article  CAS  Google Scholar 

  • Andreeva E, Pokhaznikova M, Lebedev A, Moiseeva I, Kuznetsova O, Degryse J-M (2017) Spirometry is not enough to diagnose COPD in epidemiological studies: a follow-up study. Npj Prim Care Respir Med 27:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Athari SS, Pourpak Z, Folkerts G, Garssen J, Moin M, Adcock IM, Movassaghi M, Ardestani MS, Moazzeni SM, Mortaz E (2016) Conjugated alpha-alumina nanoparticle with vasoactive intestinal peptide as a nano-drug in treatment of allergic asthma in mice. Eur J Pharmacol 791:811–820

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Burney PGJ, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EFM (2015) Chronic obstructive pulmonary disease. Nat Rev Dis Primers 1:15076

    Article  PubMed  Google Scholar 

  • Barnes PJ, Anderson GP, Fagerås M, Belvisi MG (2021) Chronic lung diseases: prospects for regeneration and repair. Eur Respir Rev 30:200213

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilton D, Pressler T, Fajac I, Clancy JP, Sands D, Minic P, Cipolli M, Galeva I, Solé A, Quittner AL, Liu K, McGinnis JP, Eagle G, Gupta R, Konstan MW, Renner S, Knoop C, Malfroot A, Dupont L, Desager K, De Baets F, Bosheva M, Nedkova V, Galabov I, Galeva I, Freitag A, Morrison N, Wilcox P, Pressler T, Martinet Y, Chiron R, Fajac I, Dominique S, Reix P, Prevotat A, Sermet I, Durieu I, Fischer R, Huber R, Staab D, Mellies U, Sextro W, Welte T, Wilkens H, Sommerwerk U, Bewig B, Inglezos I, Doudounakis S-E, Bede O, Gönczi F, Újhelyi R, McKone E, Mcnally P, Lucidi V, Cipolli M, La Rosa M, Minicucci L, Padoan R, Pisi G, Gagliardini R, Colombo C, Bronsveld I, Sapiejka E, Mazurek H, Sands D, Górnicka G, Stelmach I, Batura-Gabryel H, Rachel M, Minic P, Orosova J, Takac B, Feketova A, Martinez C, Hernandez GG, Villa-Asensi JR, Gartner S, Sole A, Lindblad A, Ledson M, Bilton D, Whitehouse J, Smyth A, Ketchell I, Lee T, Macgregor G (2020) Amikacin liposome inhalation suspension for chronic Pseudomonas aeruginosa infection in cystic fibrosis. J Cyst Fibros 19:284–291

    Article  CAS  PubMed  Google Scholar 

  • Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, Christman JW, Ballinger MN, Ghadiali SN, Englert JA (2021) Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun 12:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner JS, Kiseleva RY, Glassman PM, Parhiz H, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR (2018) The new frontiers of the targeted interventions in the pulmonary vasculature: precision and safety (2017 Grover Conference Series). Pulm Circ 8:2045893217752329

    Article  PubMed  Google Scholar 

  • Chang X, **ng L, Wang Y, Yang C-X, He Y-J, Zhou T-J, Gao X-D, Li L, Hao H-P, Jiang H-L (2020) Monocyte-derived multipotent cell delivered programmed therapeutics to reverse idiopathic pulmonary fibrosis. Sci Adv 6:eaba3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung KF (2013) New treatments for severe treatment-resistant asthma: targeting the right patient. Lancet Respir Med 1:639–652

    Article  CAS  PubMed  Google Scholar 

  • Clancy JP, Dupont L, Konstan MW, Billings J, Fustik S, Goss CH, Lymp J, Minic P, Quittner AL, Rubenstein RC, Young KR, Saiman L, Burns JL, Govan JR, Ramsey B, Gupta R (2013) Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax 68:818–825

    Article  CAS  PubMed  Google Scholar 

  • D’Anna SE, Maniscalco M, Cappello F, Carone M, Motta A, Balbi B, Ricciardolo FL, Caramori G, Stefano AD (2021) Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann Med 53:135–150

    Article  PubMed  Google Scholar 

  • Da Silva AL, De Oliveira GP, Kim N, Cruz FF, Kitoko JZ, Blanco NG, Martini SV, Hanes J, Rocco PR, Suk JS (2020) Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Sci Adv 6:eaay7973

    Article  PubMed  PubMed Central  Google Scholar 

  • De Castro LL, **sto DG, Kitoko JZ, Cruz FF, Olsen PC, Redondo PAG, Ferreira TPT, Weiss DJ, Martins MA, Morales MM, Rocco PRM (2017) Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res Ther 8:151

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vries R, Brinkman P, Van der Schee MP, Fens N, Dijkers E, Bootsma SK, De Jongh FH, Sterk PJ (2015) Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J Breath Res 9:046001

    Article  PubMed  Google Scholar 

  • Doroudian M (2019) Synthesis and characterisation of aerosolised MIF inhibitors for the treatment of respiratory disease. Trinity College, Dublin

    Google Scholar 

  • Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC (2019) Nanotechnology based therapeutics for lung disease. Thorax 74:965–976

    Article  PubMed  Google Scholar 

  • Doroudian M, O’Neill A, O’Reilly C, Tynan A, Mawhinney L, McElroy A, Webster SS, MacLoughlin R, Volkov Y, Armstrong ME, O’Toole GA, Prina-Mello A, Donnelly SC (2020) Aerosolized drug-loaded nanoparticles targeting migration inhibitory factors inhibit Pseudomonas aeruginosa-induced inflammation and biofilm formation. Nanomedicine 15:2933–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doroudian M, O’Neill A, MacLoughlin R, Prina-Mello A, Volkov Y, Donnelly SC (2021) Nanotechnology in pulmonary medicine. Curr Opin Pharmacol 56:85–92

    Article  CAS  PubMed  Google Scholar 

  • Dragonieri S, Pennazza G, Carratu P, Resta O (2017) Electronic nose technology in respiratory diseases. Lung 195:157–165

    Article  CAS  PubMed  Google Scholar 

  • Du YM, Zhuansun YX, Chen R, Lin L, Lin Y, Li JG (2018) Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res 363:114–120

    Article  CAS  PubMed  Google Scholar 

  • Dua K, De Jesus Andreoli Pinto T, Chellappan DK, Gupta G, Bebawy M, Hansbro PM (2018) Advancements in nano drug delivery systems: a challenge for biofilms in respiratory diseases. Panminerva Med 60:35–36

    Article  PubMed  Google Scholar 

  • Durham AL, Caramori G, Chung KF, Adcock IM (2016) Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res J Lab Clin Med 167:192–203

    CAS  Google Scholar 

  • Eleraky NE, Allam A, Hassan SB, Omar MM (2020) Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fens N, Zwinderman AH, Van der Schee MP, De Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180:1076–1082

    Article  CAS  PubMed  Google Scholar 

  • Fens N, De Nijs SB, Peters S, Dekker T, Knobel HH, Vink TJ, Willard NP, Zwinderman AH, Krouwels FH, Janssen H (2011) Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J 38:1301–1309

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Donnelly SC (2017) Pulmonary fibrosis in connective tissue disease (CTD): urgent challenges and opportunities. QJM Int J Med 110:475–476

    Article  Google Scholar 

  • Garbuzenko OB, Ivanova V, Kholodovych V, Reimer DC, Reuhl KR, Yurkow E, Adler D, Minko T (2017) Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomed Nanotechnol Biol Med 13:1983–1992

    Article  CAS  Google Scholar 

  • Ghaffari S, Varshosaz J, Saadat A, Atyabi F (2011) Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Int J Nanomedicine 6:35

    CAS  Google Scholar 

  • Givens BE, Geary SM, Salem AK (2018) Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy 10:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, Addrizzo-Harris DJ, Odonnell AE, Marras TK, Flume PA (2018) Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med 198:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Hoesel LM, Flierl MA, Niederbichler AD, Rittirsch D, Mcclintock SD, Reuben JS, Pianko MJ, Stone W, Yang H, Smith M (2008) Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. Antioxid Redox Signal 10:963–972

    Article  Google Scholar 

  • Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Primers 1:15025

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshyar N, Gray S, Han H, Bao G (2016) The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 11:673–692

    Article  CAS  PubMed  Google Scholar 

  • Ivanova V, Garbuzenko OB, Reuhl KR, Reimer DC, Pozharov VP, Minko T (2013) Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur J Pharm Biopharm 84:335–344

    Article  CAS  PubMed  Google Scholar 

  • Kan S, Hariyadi DM, Grainge C, Knight DA, Bartlett NW, Liang M (2020) Airway epithelial-targeted nanoparticles for asthma therapy. Am J Physiol Lung Cell Mol Physiol 318:L500–L509

    Article  PubMed  Google Scholar 

  • Kaneko K, Osman N, Carini V, Scagnetti G, Saleem I (2020) Overview of the advantages and disadvantages of different mucosal sites for the delivery of nanoparticles. In: Muttil P, Kunda NK (eds) Mucosal delivery of drugs and biologics in nanoparticles. Springer International Publishing, Cham

    Google Scholar 

  • Kim ES, Keating GM (2015) Pirfenidone: a review of its use in idiopathic pulmonary fibrosis. Drugs 75:219–230

    Article  CAS  PubMed  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cao X, Guo M, **e M, Liu X (2020) Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis for the Global Burden of Disease Study 2017. BMJ 368:m234

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthay MA, McAuley DF, Ware LB (2017) Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 5:524–534

    Article  PubMed  Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2020) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM (2019) Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine 14:1937–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muralidharan P, Malapit M, Mallory E, Hayes D, Mansour HM (2015) Inhalable nanoparticulate powders for respiratory delivery. Nanomed Nanotechnol Biol Med 11:1189–1199

    Article  CAS  Google Scholar 

  • Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM (2018) The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev 124:82–97

    Article  CAS  PubMed  Google Scholar 

  • Okusanya OO, Bhavnani SM, Hammel JP, Forrest A, Bulik CC, Ambrose PG, Gupta R (2014) Evaluation of the pharmacokinetics and pharmacodynamics of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infections using data from two phase 2 clinical studies. Antimicrob Agents Chemother 58:5005–5015

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivier KN, Griffith DE, Eagle G, Mcginnis JP, Micioni L, Liu K, Daley CL, Winthrop KL, Ruoss S, Addrizzo-Harris DJ (2017) Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 195:814–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil MA, Upadhyay AK, Hernandez-Lagunas L, Good R, Carpenter TC, Sucharov CC, Nozik-Grayck E, Kompella UB (2018) Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artif Cells Nanomed Biotechnol 46:S1059–S1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  Google Scholar 

  • Quon BS, Goss CH, Ramsey BW (2014) Inhaled antibiotics for lower airway infections. Ann Am Thorac Soc 11:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghu G, Selman M (2015) Nintedanib and pirfenidone. New antifibrotic treatments indicated for idiopathic pulmonary fibrosis offer hopes and raises questions. Am J Respir Crit Care Med 191:252–254

    Article  CAS  PubMed  Google Scholar 

  • Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, Sparks J, Matar M, Fewell J, Gerthoffer WT (2020) Nanoparticle delivery of anti-inflammatory LNA oligonucleotides prevents airway inflammation in a HDM model of asthma. Mol Ther Nucleic Acids 19:1000–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos FL, Krahnke JS, Kim V (2014) Clinical issues of mucus accumulation in COPD. Int J Chron Obstruct Pulmon Dis 9:139–150

    PubMed  PubMed Central  Google Scholar 

  • Ratiu IA, Ligor T, Bocos-Bintintan V, Mayhew CA, Buszewski B (2021) Volatile organic compounds in exhaled breath as fingerprints of lung cancer, asthma and COPD. J Clin Med 10:32

    Article  Google Scholar 

  • Rincon M, Clemments A, Landy C, Champagne D (2017) A new inhalation nanoparticle-anti-IL-6 therapy for treatment of asthma. In: B31. Pre-clinical and translational studies in asthma. American Thoracic Society, New York

    Google Scholar 

  • Roy S, Manna K, Jha T, Saha KD (2020) Chrysin-loaded PLGA attenuates OVA-induced allergic asthma by modulating TLR/NF-κB/NLRP3 axis. Nanomedicine 30:102292

    Article  CAS  PubMed  Google Scholar 

  • Sadikot RT, Kolanjiyil AV, Kleinstreuer C, Rubinstein I (2017) Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome. Biomed Hub 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafiek H, Fiorentino F, Merino JL, López C, Oliver A, Segura J, De Paul I, Sibila O, Agustí A, Cosío BG (2015) Using the electronic nose to identify airway infection during COPD exacerbations. PLoS One 10:e0135199

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirley M (2019) Amikacin liposome inhalation suspension: a review in Mycobacterium avium complex lung disease. Drugs 79:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shurbaji S, El-Sherbiny IM, Alser M, Ali IH, Kordi H, Al-Sadi A, Popelka A, Benslimane F, Yacoub M, Yalcin HC (2021) Nitric oxide releasing hydrogel nanoparticles decreases epithelial cell injuries associated with airway reopening. Front Bioeng Biotechnol 8:579788

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibila O, Garcia-Bellmunt L, Giner J, Merino JL, Suarez-Cuartin G, Torrego A, Solanes I, Castillo D, Valera JL, Cosio BG, Plaza V, Agusti A (2014) Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir Med 108:1608–1614

    Article  PubMed  Google Scholar 

  • Siegel S, Clock J, Hoeft J, Chan B, Sullivan P, Philley J, Strnad L, Griffith D, Winthrop K (2018) Open-label trial of amikacin liposome inhalation suspension in M. abscessus lung disease. In: A58. Non-tuberculous mycobacteria: off the beaten track. American Thoracic Society, New York

    Google Scholar 

  • Soriano JB, Kendrick PJ, Paulson KR, Gupta V, Abrams EM, Adedoyin RA, Adhikari TB, Advani SM, Agrawal A, Ahmadian E (2020) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 8:585–596

    Article  Google Scholar 

  • Trivedi R, Redente EF, Thakur A, Riches DW, Kompella UB (2012) Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology 23:505101

    Article  PubMed  Google Scholar 

  • Vader P, Mol EA, Pasterkamp G, Schiffelers RM (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156

    Article  CAS  PubMed  Google Scholar 

  • Van Geffen WH, Kerstjens H (2016) Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by electronic nose. Eur Respir J 48:PA2619

    Google Scholar 

  • Vancheri C, Mastruzzo C, Sortino MA, Crimi N (2004) The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol 25:40–46

    Article  CAS  PubMed  Google Scholar 

  • Varshosaz J, Ghaffari S, Mirshojaei S, Jafarian A, Atyabi F, Kobarfard F, Azarmi S (2013) Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. Biomed Res Int 2013:136859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vij N, Min T, Bodas M, Gorde A, Roy I (2016) Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. Nanomed Nanotechnol Biol Med 12:2415–2427

    Article  CAS  Google Scholar 

  • Wang K, Feng Y, Li S, Li W, Chen X, Yi R, Zhang H, Hong Z (2018) Oral delivery of bavachinin-loaded PEG–PLGA nanoparticles for asthma treatment in a murine model. J Biomed Nanotechnol 14:1806–1815

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang K, Deng G, Liu X, Wu X, Hu H, Zhang Y, Gao W, Li Q (2020) Mitochondria-modulating porous Se@SiO2 nanoparticles provide resistance to oxidative injury in airway epithelial cells: implications for acute lung injury. Int J Nanomedicine 15:2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GW, Berg NK, Reskallah A, Yuan X, Eltzschig HK (2021) Acute respiratory distress syndrome. Anesthesiology 134:270–282

    Article  CAS  PubMed  Google Scholar 

  • Winthrop KL, Flume PA, Thomson R, Mange KC, Yuen DW, Ciesielska M, Morimoto K, Ruoss SJ, Codecasa LR, Yim JJ, Marras TK, Van Ingen J, Wallace RJ Jr, Brown-Elliott BA, Coulter C, Griffith DE (2020) Amikacin liposome inhalation suspension for MAC lung disease: a 12-month open-label extension study. Ann Am Thorac Soc 18(7):1147–1157

    Article  Google Scholar 

  • Wongkarnjana A, Yanagihara T, Kolb MR (2019) Treatment of idiopathic pulmonary fibrosis with nintedanib: an update. Expert Rev Respir Med 13:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Andrian T, Sharp G, Bicer EM, Vandera K-KA, Patel A, Mudway I, Dailey LA, Forbes B (2020) Development of new in vitro models of lung protease activity for investigating stability of inhaled biological therapies and drug delivery systems. Eur J Pharm Biopharm 146:64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2018) Disease burden and mortality estimates [Online]. https://www.who.int/healthinfo/global_burden_disease/estimates/en/. Accessed 19 Jan 2021

  • Xu Y, Liu H, Song L (2020) Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnol 18:1–25

    Article  CAS  Google Scholar 

  • Yu M, Wu J, Shi J, Farokhzad OC (2016) Nanotechnology for protein delivery: overview and perspectives. J Control Release 240:24–37

    Article  CAS  PubMed  Google Scholar 

  • Yu H-P, Liu F-C, Umoro A, Lin Z-C, Elzoghby AO, Hwang T-L, Fang J-Y (2020) Oleic acid-based nanosystems for mitigating acute respiratory distress syndrome in mice through neutrophil suppression: how the particulate size affects therapeutic efficiency. J Nanobiotechnol 18:25

    Article  CAS  Google Scholar 

  • Zhang X, Zhang W, Liu L, Yang M, Huang L, Chen K, Wang R, Yang B, Zhang D, Wang J (2017) Antibiotic-loaded MoS(2) nanosheets to combat bacterial resistance via biofilm inhibition. Nanotechnology 28:225101

    Article  PubMed  Google Scholar 

  • Zhang CY, Lin W, Gao J, Shi X, Davaritouchaee M, Nielsen AE, Mancini RJ, Wang Z (2019) pH-Responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl Mater Interfaces 11:16380–16390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Science Foundation Ireland (SFI) and the Health Research Board (HRB) of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seamas C. Donnelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doroudian, M., Armstrong, M.E., Donnelly, S.C. (2023). Nano-Based Therapies for Acute and Chronic Lung Diseases. In: Ribeiro de Araujo, D., Carneiro-Ramos, M. (eds) Biotechnology Applied to Inflammatory Diseases. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-8342-9_12

Download citation

Publish with us

Policies and ethics

Navigation