Biochar-Mediated Suppression of Soil-Borne Pathogens in Agronomically Important Crops: An Outlook

  • Chapter
  • First Online:
Detection, Diagnosis and Management of Soil-borne Phytopathogens

Abstract

Biochar is solid produce acquired by the heating of biological or carbon-based material in the complete or fractional presence of oxygen and is used as a soil amendment. The numerous valuable properties of biochar on the physical, biological, and chemical properties of soil as well as on plant condition and improvement are extensively acknowledged. The amendment of biochar has also been frequently debated for its properties of suppression of diseases. Nevertheless, the principal mechanisms for these properties are extremely complex and generally unidentified. It is anticipated that the composition of plant root exudate that alters the biochemical and microbial properties in the soil and the stimulation of defense mechanisms of plants due to the amendments of biochar are some critical reasons influencing pathogenic dominance. Further comprehensive studies are required for understanding the detailed connections of plant-pathogen coordination with various types of biochar that will support accomplishing maximum aid of biochar addition for the protection of plants from numerous soil-borne pathogens. In this chapter, the perspective of biochar for the regulation of pathogenic diseases is discussed, specifically the communications with plant pathogenic fungi under contradictory environmental circumstances. It is concluded that the amendment of biochar with soil could be an encouraging approach for the combined management of pests and pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adekiya AO, Agbede TM, Aboyeji CM, Dunsin O, Simeon VT (2019) Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci Hort 243:457–463

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier/Academic Press, London

    Google Scholar 

  • Akanmu O, Sobowalea AA, Abialab MA, Olawuyia OJ, Odebodea AC (2020) Efficacy of biochar in the management of Fusarium verticillioides Sacc. causing ear rot in Zea mays L. Biotechnol Rep 26:e00474

    Article  CAS  Google Scholar 

  • Akhter A, Hage-Ahmed K, Soja G, Steinkellner S (2016) Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil 406:425–440

    Article  CAS  Google Scholar 

  • Ali N, Khan S, Yao H, Wang J (2019) Biochars reduced the bioaccessibility and (bio) uptake of organochlorine pesticides and changed the microbial community dynamics in agricultural soils. Chemosphere 224:805–815

    Article  CAS  PubMed  Google Scholar 

  • Allen RI (1847) A brief compend of American agriculture. C. M. Saxton, New York, NY

    Book  Google Scholar 

  • Amoah-Antwi C, Kwiatkowska-Malina J, Thornton SF, Fenton O, Malina G, Szara E (2020) Restoration of soil quality using biochar and brown coal waste: a review. Sci Total Environ 722:137852

    Article  CAS  PubMed  Google Scholar 

  • Araujo AS, Blum LEB, Figueiredo CC (2019) Biochar and Trichoderma harzianum for the Control of Macrophomina phaseolina. Braz Arch Biol Technol 62:e19180259

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barros JA, Medeiros EV, Notaro KA, Moraes WS, Silva JEM, Nascimento TC, Moreira KA (2014) Different cover promote sandy soil suppressiveness to root rot disease of cassava caused by Fusarium solani. Afr J Microbiol Res 8(10):967–973

    Article  Google Scholar 

  • Bartz FE, Glassbrook NJ, Danehower DA, Cubeta MA (2012) Elucidating the role of the phenylacetic acid metabolic complex in the pathogenic activity of Rhizoctonia solani anastomosis group 3. Mycologia 104(4):793–803

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 81(4):687–711

    Article  CAS  Google Scholar 

  • Bonanomi G, Ippolito F, Scala F (2015) A “black” future for plant pathology? Biochar as a new soil amendment for controlling plant diseases. J Plant Pathol 97:223–234

    Google Scholar 

  • Bonanomi G, Zotti M, Idbella M, Cesarano G, Al-Rowaily SL, Abd-ElGawad AM (2022) Mixtures of organic amendments and biochar promote beneficial soil microbiota and affect Fusarium oxysporum f. sp. lactucae, Rhizoctoniasolani and Sclerotinia minor disease suppression. Plant Pathol 71:818–829

    Article  CAS  Google Scholar 

  • Brassard P, Godbout S, Raghavan V (2016) Alteração do biochar do solo comoferramenta de mitigação das mudançasclimáticas: principaisparâmetros e mecanismosenvolvidos. Jornal de GestãoAmbiental 181:484–497

    CAS  Google Scholar 

  • Bruehl GW (1987) Soil-borne plant pathogens. Macmillan, New York, NY

    Google Scholar 

  • Cao Y, Wang J, Wu H, Yan S, Guo D, Wang G, Ma Y (2016) Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression. Appl Soil Ecol 107:116–123

    Article  Google Scholar 

  • Chen M, Alim N, Zhang Y, Xu N, Cao X (2018) Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils. Environ Pollut 239:562–570

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Qi G, Ma G, Zhao X (2020) Biochar amendment controlled bacterial wilt through changing soil chemical properties and microbial community. Microbiol Res 231:126373

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Jones DL, Hill P, Bastami MS, Tu CL (2018) Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Arch Agron Soil Sci 64:850–859

    Article  CAS  Google Scholar 

  • Choudhary DK, Nabi SU, Dar MS, Khan KA (2018) Ralstonia solanacearum: a wide spread and global bacterial plant wilt pathogen. Int J Pharmacogn Phytochem 7:85–90

    CAS  Google Scholar 

  • De Medeiros EV, Notaro KDA, de Barros JA, Duda GP, Moraes MDCHDS, Ambrósio MMDQ, Sales Júnior R (2019) Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola. J Phytopathol 167(4):209–217

    Article  Google Scholar 

  • De Medeiros EV, dos Santos MDCH, da Costa DP, Duda GP, de Oliveira JB, da Silva JA, Hammecker C (2020) Effect of biochar and inoculation with Trichoderma aureoviride on melon growth and sandy Entisol quality. Aust J Crop Sci 14(6):971–977

    Article  Google Scholar 

  • De Tender CA, Debode J, Vandecasteele B, D’Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M (2016) Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl Soil Ecol 107:1–12

    Article  Google Scholar 

  • Debode J, Ebrahimi N, D’hose T, Cremelie P, Viaene N, Vandecasteele B (2020) Has compost with biochar added during the process added value over biochar or compost to increase disease suppression? Appl Soil Ecol 153:103571

    Article  Google Scholar 

  • Ding Y, Liu Y, Liu S, Huang X, Li Z, Tan X, Zeng G, Zhou L (2017) Potential benefits of biochar in agricultural soils: a review. Pedosphere 27(4):645–661

    Article  CAS  Google Scholar 

  • Edeh IG, Mašek O, Buss W (2020) A meta-analysis on biochar’s effects on soil water properties – new insights and future research challenges. Sci Total Environ 714:136857

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Shurigin V, Alaylar B, Ma H, Müller MEH, Wirth S, Reckling M, Bellingrath-Kimura SD (2020) The effect of biochars and endophytic bacteria on growth and root rot disease incidence of Fusarium infested narrow-leafed lupin (Lupinus angustifolius L.). Microorganisms 8(4):496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elad Y, Rav-David D, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Elad Y, Cytryn E, Meller Harel Y, Lew B, Graber E (2012) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50(3):335–349

    Google Scholar 

  • Elmer WH (2016) Effect of leaf mold mulch, biochar, and earthworms on mycorrhizal colonization and yield of Asparagus affected by Fusarium crown and root rot. Plant Dis 100(12):2507–2512

    Article  CAS  PubMed  Google Scholar 

  • Elmer WH, Pignatello JJ (2011) Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Dis 95(8):960–966

    Article  PubMed  Google Scholar 

  • Frenkel O, Jaiswal AK, Elad Y, Beni L, Kammann C, Graber ER (2017) The effect of biochar on plant diseases: what should we learn while designing biochar substrates? J Environ Eng Landsc Manag 25(2):105–113

    Article  Google Scholar 

  • Gao Y, Lu Y, Lin W, Tian J, Cai K (2019) Biochar suppresses bacterial wilt of tomato by improving soil chemical properties and shifting soil microbial community. Microorganisms 7(12):676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65(1):28–39

    Article  CAS  Google Scholar 

  • Graber ER, Frenkel O, Jaiswal AK, Elad Y (2014) How may biochar influence severity of diseases caused by soil-borne pathogens? Carbon Manag 5:169–183

    Article  CAS  Google Scholar 

  • Gravel V, Dorais M, Menard C (2013) Organic potted plants amended with biochar: its effect on growth and Pythium colonization. Can J Plant Sci 93:1217–1227

    Article  CAS  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Hacquard S (2016) Disentangling the factors sha** microbiota composition across the plant holobiont. New Phytol 209(2):454–457

    Article  PubMed  Google Scholar 

  • Han L, Sun K, Yang Y, **a X, Li F, Yang Z, **ng B (2020) Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma 364:114184

    Article  CAS  Google Scholar 

  • Harel YM, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, Graber ER (2012) Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357:245–257

    Article  Google Scholar 

  • Hassan M, Liu Y, Naidu R, Parikh SJ, Du J, Qi F, Willett IR (2020) Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci Total Environ 744:140714

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Soriano MC, Kerré B, Kopittke PM, Horemans B, Smolders E (2016) Biochar affects carbon composition and stability in soil: a combined spectroscopy microscopy study. Sci Rep 6:25127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann L, Lesueur D, Robin A, Robain H, Wiriyakitnateekul W, Bräu L (2019) Impact of biochar application dose on soil microbial communities associated with rubber trees in North East Thailand. Sci Total Environ 689:970–979

    Article  CAS  PubMed  Google Scholar 

  • Igalavithana AD, Kim KH, Jung JM, Heo HS, Kwon EE, Tack FM, Tsang DCW, Jeon YJ, Ok YS (2019) Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal (loid) s contaminated soils. Environ Int 126:791–801

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal AK, Elad Y, Graber ER, Frenkel O (2014) Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biol Biochem 69:110–118

    Article  CAS  Google Scholar 

  • Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O (2017) Linking the belowground microbial composition, diversity and activity to soil-borne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7:1–18

    Article  Google Scholar 

  • Jaiswal AK, Graber ER, Elad Y, Frenkel O (2019) Biochar as a management tool for soil-borne diseases affecting early stage nursery seedling production. Crop Prot 120:34–42

    Article  Google Scholar 

  • Katan J (2004) Role of cultural practices for the management of soil-borne pathogens in intensive horticultural systems. In: XXVI International Horticultural Congress: Managing Soil-Borne Pathogens: A Sound Rhizosphere to Improve Productivity. Toronto, Canada, pp 11–18

    Google Scholar 

  • Katan J (2017) Diseases caused by soil-borne pathogens: biology, management and challenges. J Plant Pathol 99(2):305–315

    Google Scholar 

  • Katan J, Waisel Y, Eshel A, Kafkafi U (2002) Interactions of soil-borne pathogens with roots and aboveground plant organs. In: Kafkafi U, Waisel Y, Eshel A (eds) Plant roots: the hidden half. CRC Press, Boca Raton, FL, pp 949–959

    Chapter  Google Scholar 

  • Kavitha B, Reddy PVL, Kim B, Lee SS, Pandey SK, Kim KH (2018) Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manag 227:146–154

    Article  CAS  Google Scholar 

  • Koike S, Subbarao K, Davis RM, Turini T (2003) Vegetable diseases caused by soil-borne pathogens. UCANR Publications University of California, Oakland, CA

    Book  Google Scholar 

  • Larkin RP (2015) Soil health paradigms and implications for disease management. Annu Rev Phytopathol 53:199–221

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Li Z, Unzué-Belmonte D, Cornelis JT, Linden CV, Struyf E, Ronsse F, Delvaux B (2019) Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant Soil 438:187–203

    Article  CAS  Google Scholar 

  • Li C, Ahmed W, Li D, Yu L, Xu L, Xu T, Zhao Z (2021) Biochar suppresses bacterial wilt disease of flue-cured tobacco by improving soil health and functional diversity of rhizosphere microorganisms. Appl Soil Ecol 171:104314

    Article  Google Scholar 

  • Lima JRS, Silva WM, Medeiros EV, Duda GP, Correa MM, Filho Martins AP, Clermont-Dauphin C, Antonino ACD, Hammecker C (2018) Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 319:14–23

    Article  CAS  Google Scholar 

  • Lumsden RD, Lewis JA, Fravel DR (1995) Formulation and delivery of biocontrol agents for use against soil-borne plant pathogens. In: Biorational pest control agents: formulation and delivery. American Chemical Society, Washington, DC, pp 166–182

    Book  Google Scholar 

  • Luo C, Yang J, Chen W, Han F (2020) Effect of biochar on soil properties on the Loess Plateau: results from field experiments. Geoderma 369:114323

    Article  CAS  Google Scholar 

  • Matsubara Y, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hort Sci 71(3):370–374

    Article  Google Scholar 

  • Mazzola M, Reynolds MP (2010) Management of resident soil microbial community structure and function to suppress soil-borne disease development. Clim Change Crop Prod 1:200–218

    Article  Google Scholar 

  • Mehari ZH, Elad Y, Rav-David D et al (2015) Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil 395:31–44

    Article  CAS  Google Scholar 

  • Nerome M, Toyota K, Islam TM et al (2005) Suppression of bacterial wilt of tomato by incorporation of municipal biowaste charcoal into soil. Soil Microorg 59(1):9–14. (in Japanese)

    Google Scholar 

  • Ogundeji AO, Li Y, Liu X, Meng L, Sang P, Mu Y, Li S (2021) Eggplant by grafting enhanced with biochar recruits specific microbes for disease suppression of Verticillium wilt. Appl Soil Ecol 163:103912

    Article  Google Scholar 

  • Palansooriya KN, Wong JTF, Hashimoto Y, Huang L, Rinklebe J, Chang SX, Bolan N, Wang H, Ok YS (2019) Response of microbial communities to biochar amended soils: a critical review. Biochar 1(1):3–22

    Article  Google Scholar 

  • Pandey D, Daverey A, Arunachalam K (2020) Biochar: production, properties and emerging role as a support for enzyme immobilization. J Clean Prod 255:2020

    Article  Google Scholar 

  • Pimentel D, McLaughlin L, Zepp A et al (1991) Environmental and economic effects of reducing pesticide use. Bioscience 41(6):402–409

    Article  Google Scholar 

  • Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. Radicis lycopersici in tomato. Biol Control 67(2):284–291

    Article  CAS  Google Scholar 

  • Rasool M, Akhter A, Haider MS (2021) Molecular and biochemical insight into biochar and Bacillus subtilis induced defense in tomatoes against Alternaria solani. Sci Hort 285:110203

    Article  CAS  Google Scholar 

  • Razzaghi F, Obour PB, Arthur E (2020) Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361:114055

    Article  CAS  Google Scholar 

  • Rogovska N, Laird D, Leandro L et al (2017) Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant Soil 413:111–126

    Article  CAS  Google Scholar 

  • Romdhane L, Awad YM, Radhouane L, Cortivo CD, Barion G, Panozzo A, Vamerali T (2019) Wood biochar produces different rates of root growth and transpiration in two maize hybrids (Zea mays L.) under drought stress. Arch Agron Soil Sci 65(6):846–866

    Article  CAS  Google Scholar 

  • Rose D, Sharma G, Rawat S (2022) Impact of rice-husk biochar on Colletotrichum falcatum, the pathogen of sugarcane red rot disease. Ind Phytopathol 75:325–329

    Article  Google Scholar 

  • Sales Júnior R, Senhor RF, Michereff SJ, Medeiros EV (2017) Influence of green manure in the monosporascus vine decline in naturally infested soils. Hort Bras 35:135–140

    Article  Google Scholar 

  • Semida WM, Beheiry HR, Sétamou M, Simpson CR, Abd El-Mageed TA, Rady MM, Nelson SD (2019) Biochar implications for sustainable agriculture and environment: a review. S Afr J Bot 127:333–347

    Article  CAS  Google Scholar 

  • Silva LG, de Andrade CA, Bettiol W (2020) Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato. Trop Plant Pathol 45:73–83

    Article  Google Scholar 

  • Wang M, Sun Y, Gu Z, Wang R, Sun G, Zhu C, Guo S, Shen Q (2016a) Nitrate protects cucumber plants against Fusarium oxysporum by regulating citrate exudation. Plant Cell Physiol 57(9):2001–2012

    Article  CAS  PubMed  Google Scholar 

  • Wang J, **ong Z, Kuzyakov Y (2016b) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8(3):512–523

    Article  CAS  Google Scholar 

  • Wang R, Wang Y, Yang Q, Kang C, Li M (2018) Unraveling the characteristics of the microbial community and potential pathogens in the rhizosphere soil of Rehmannia glutinosa with root rot disease. Appl Soil Ecol 130:271–279

    Article  Google Scholar 

  • Wang Y, Ma Z, Wang X, Sun Q, Dong H, Wang G, Chen X, Yin C, Han Z, Mao Z (2019a) Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil. Sci Hort 256:108641

    Article  CAS  Google Scholar 

  • Wang M, Wang JJ, Tafti ND, Hollier CA, Myres G, Wang X (2019b) Effect of alkali-enhanced biochar on silicon uptake and suppression of gray leaf spot development in perennial ryegrass. Crop Prot 119:9–16

    Article  CAS  Google Scholar 

  • **a H, Riaz M, Zhang M, Liu B, El-Desouki Z, Jiang C (2020) Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil. Ecotoxicol Environ Saf 196:110531

    Article  CAS  PubMed  Google Scholar 

  • **ang W, Zhang X, Chen K, Fang J, He F, Hu X, Gao B (2020) Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem Eng J 385:123842

    Article  CAS  Google Scholar 

  • Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Article  Google Scholar 

  • Yao Q, Liu J, Yu Z, Li Y, ** J, Liu X, Wang G (2017) Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol Biochem 110:56–67

    Article  CAS  Google Scholar 

  • Zeeshan M, Ahmad W, Hussain F, Ahamd W, Numan M, Shah M, Ahmad I (2020) Phytostabilization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J Clean Prod 255:120318

    Article  CAS  Google Scholar 

  • Zhang J, Qun C, Changfu Y (2016) Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 26(2):265–272

    Article  Google Scholar 

  • Zhang C, Yong L, Tian X, Xu Q, Chen Z, Lin W (2017) Tobacco bacterial wilt suppression with biochar soil addition associates to improved soil physiochemical properties and increased rhizosphere bacteria abundance. Appl Soil Ecol 112:90–96

    Article  Google Scholar 

  • Zhou X, Li C, Liu L, Zhao J, Zhang J, Cai Z, Huang X (2019) Control of Fusarium wilt of lisianthus by reassembling the microbial community in infested soil through reductive soil disinfestation. Microbiol Res 220:1–11

    Article  PubMed  Google Scholar 

  • Zhu X, Mao L, Chen B (2019) Driving forces linking microbial community structure and functions to enhanced carbon stability in biochar-amended soil. Environ Int 133:105211

    Article  CAS  PubMed  Google Scholar 

  • Zwart DC, Kim SH (2012) Biochar amendment increases resistance to stem lesions caused by Phytophthora spp. in tree seedlings. Hort Sci 47(12):1736–1740

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Director, ICAR-NBAIM, Mau for providing scientific and technical support during preparation of the manuscript. The authors gratefully acknowledge the Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, and Indian Council of Agricultural Research, Ministry of Agriculture and Farmers Welfare, Government of India, for providing financial support for the study.

Funding

This research was supported by Network Project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), ICAR-NBAIM, and Indian Council of Agricultural Research, New Delhi (India).

Conflicts of Interest

The authors declare that they have no known competing financial interest or personal relationship that could have appeared to influence the content reported in this manuscript. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilyas, T. et al. (2023). Biochar-Mediated Suppression of Soil-Borne Pathogens in Agronomically Important Crops: An Outlook. In: Singh, U.B., Kumar, R., Singh, H.B. (eds) Detection, Diagnosis and Management of Soil-borne Phytopathogens. Springer, Singapore. https://doi.org/10.1007/978-981-19-8307-8_15

Download citation

Publish with us

Policies and ethics

Navigation