Advances in Detection Techniques for Fungus-like Organisms of Aquaculture Importance

  • Chapter
  • First Online:
Fisheries and Aquaculture of the Temperate Himalayas

Abstract

Oomycetes are a class of eukaryotic organisms that are similar to fungus in morphology and lifestyle. The cell wall of oomycetes is composed of cellulose, unlike fungus, where chitin is the main component. These organisms are generally considered saprophytes with the ability to cause secondary infection. However, some species are highly pathogenic and cause severe diseases in fish. Important fish pathogens of this class belong to the genus Saprolegnia, Achlya, and Aphanomyces under the order Saprolegniales. These organisms have caused huge economic loss in aquaculture and are even considered responsible for the decline in populations of wild fish and amphibians. Previously, these organisms were effectively controlled by use of malachite green, which was later banned. This has led to the emergence of these organisms with increased incidence, virulence, and host range. The diagnosis of the disease can be made by observing the gross lesion of white cotton wool-like growth at the site of infection, but identifying a causative agent is not possible. Identification of the genus and up to the species level is made through various ways such as microscopic observation of the reproductive structures, antibody-based methods, and molecular identification techniques. With advancement in technology, rapid, specific methods have been developed that can identify as well as quantify the causative agent in a given sample. Fast and accurate identification of pathogen will enable us to act promptly against the infection to prevent further spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adil B, Shankar KM, Kumar BT, Patil R, Ballyaya A, Ramesh KS, Poojary SR, Byadgi OV, Siriyappagouder P (2013) Development and standardization of a monoclonal antibody-based rapid flow-through immunoassay for the detection of Aphanomyces invadans in the field. J Vet Sci 14(4):413–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82(2):247–277

    Google Scholar 

  • Bangyeekhun E, Quiniou SM, Bly JE, Cerenius L (2001) Characterisation of Saprolegnia sp. isolates from channel catfish. Dis Aquat Org 45(1):53–59

    CAS  Google Scholar 

  • Barksdale AW (1962) Concerning the species, Achlya Bisexualis. Mycologia 54:704–712

    Google Scholar 

  • Beakes GW, Wood SE, Burr AW (1994) Features which characterize Saprolegnia isolates from salmon fish lesions—a review. In: Mueller GJ (ed) Salmon Saprolegniasis. Bonneville Power Administration, Portland, pp 33–66

    Google Scholar 

  • Beakes GW, Glockling SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycete ‘fungi’. Protoplasma 249:3–19

    PubMed  Google Scholar 

  • Bullis RA, Noga EJ, Levy MG (1996) Production and preliminary characterization of monoclonal antibodies to Saprolegnia parasitica. Mycol Res 100(4):489–494

    CAS  Google Scholar 

  • Cerenius L, Söderhäll K, Fuller MS (1987) Aphanomyces astaci and Aphanomyces sp. In: Fuller MS, Jaworsky A (eds) Zoosporic fungi in teaching and research. Southeastern Publishers, Athens, pp 64–65

    Google Scholar 

  • Choi YJ, Lee SH, Nguyen T, Nam B, Lee HB (2019) Characterization of Achlya americana and A bisexualis (Saprolegniales, Oomycota) isolated from freshwater environments in Korea. Mycobiology 47(2):135–142

    PubMed  PubMed Central  Google Scholar 

  • Czeczuga B, Kiziewicz B, Godlewska A (2004) Zoosporic fungi growing on eggs of Coregonus lavaretus holsatus Thienemann, 1916 from Lake Wdzydze in Kaszuby. Pol J Environ Stud 13:355–359

    Google Scholar 

  • Daugherty J, Evans TM, Skillom T, Watson LE, Money NP (1998) Evolution of spore release mechanisms in the Saprolegniaceae (oomycetes): evidence from a phylogenetic analysis of internal transcribed spacer sequences. Fungal Genet Biol 24:354–363

    CAS  PubMed  Google Scholar 

  • Di Domenico M, Curini V, Caprioli R, Giansante C, MrugaÅ‚a A, MojžiÅ¡ová M, Cammà C, Petrusek A (2021) Real-time PCR assays for rapid identification of common Aphanomyces astaci genotypes. Front Ecol Evol 9:597585

    Google Scholar 

  • Diéguez-Uribeondo J, Cerenius L, Söderhäll K (1996) Physiological characterization of Saprolegnia parasitica isolates from brown trout. Aquaculture 140:247–257

    Google Scholar 

  • Diéguez-Uribeondo J, Fregeneda-Grandes J, Cerenius L, Pérez-Iniesta E, Aller-Gancedo J, Telleria M, Söderhäll K, María M (2007) Re-evaluation of the enigmatic species complex Saprolegnia diclina-Saprolegnia parasitica based on morphological, physiological and molecular data. Fungal Genet Biol 44:585–601

    PubMed  Google Scholar 

  • Diéguez-Uribeondo J, García MA, Cerenius L, Kozubíková E, Ballesteros I, Windels C, Weiland J, Kator H, Söderhäll K, Martín MP (2009) Phylogenetic relationships among plant and animal parasites, and saprotrophs in Aphanomyces (oomycetes). Fungal Genet Biol 46:365–376

    PubMed  Google Scholar 

  • Elameen A, Stueland S, Kristensen R, Fristad RF, VrÃ¥lstad T, Skaar I (2021) Genetic analyses of Saprolegnia strains isolated from salmonid fish of different geographic origin document the connection between pathogenicity and molecular diversity. J Fungi (Basel) 7(9):713

    CAS  PubMed  Google Scholar 

  • Fregeneda-Grandes JM, Rodríguez-Cadenas F, Aller-Gancedo JM (2007a) Fungi isolated from cultured eggs, alevins and broodfish of brown trout in a hatchery affected by Saprolegniosis. J Fish Biol 71:510–518

    Google Scholar 

  • Fregeneda-Grandes JM, Rodríguez-Cadenas F, Carbajal-González MT, Aller-Gancedo JM (2007b) Detection of ‘long-haired’ Saprolegnia (S. parasitica) isolates using monoclonal antibodies. Mycol Res 111(Pt 6):726–733

    PubMed  Google Scholar 

  • Fricker M, Boddy L, Bebber D (2007) Biology of the fungal cell. Springer, Cham, pp 309–330

    Google Scholar 

  • Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S (2017) Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43(3):263–293

    CAS  PubMed  Google Scholar 

  • Ganapathi MN, Rajesh KM, Sahoo AK, Shankar KM (2008) Monoclonal antibody-based detection of Aphanomyces invadans for surveillance and prediction of epizootic ulcerative syndrome (EUS) outbreak in fish. In: Bondad-Reantaso MG, Mohan CV, Crumlish M, Subasinghe RP (eds) Diseases in Asian aquaculture VI. Fish Health Section. Asian Fisheries Society, Manila, Philippines, pp 157–168

    Google Scholar 

  • Ghosh S, Straus DL, Good C, Phuntumart V (2021) Development and comparison of loop-mediated isothermal amplification with quantitative PCR for the specific detection of Saprolegnia spp. PLoS One 16(12):e0250808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gozlan RE, Marshall WL, Lilje O, Jessop CN, Gleason FH, Andreou D (2014) Current ecological understanding of fungal-like pathogens of fish: what lies beneath? Front Microbiol 5:62. https://doi.org/10.3389/fmicb.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  • Greeff-Laubscher MR, Christison KW, Smit NJ (2019) First record of the water mold Achlya bisexualis (Saprolegniaceae) isolated from ornamental fish in South Africa. J Aquat Anim Health 31(4):354–363

    CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6(10):986–994

    CAS  PubMed  Google Scholar 

  • Huang T, Cerenius L, Söderhäll K (1994) Analysis of genetic diversity in crayfish plague fungus, Aphanomyces astaci, by random amplification of polymorphic DNA. Aquaculture 126:1–10

    CAS  Google Scholar 

  • Iberahim NA, Trusch F, van West P (2018) Aphanomyces invadans, the causal agent of epizootic ulcerative syndrome, is a global threat to wild and farmed fish. Fungal Biol Rev 32(3):118–130

    Google Scholar 

  • Johnson TW, Seymour RL, Padgett DE (2002) Biology and systematics of the Saprolegniaceae. University of North Carolina at Wilmington, Wilmington, NC

    Google Scholar 

  • Kamoun S, Smart CD (2005) Late blight of potato and tomato in the genomics era. Plant Dis 89:692–699

    CAS  PubMed  Google Scholar 

  • Ke X, Wang J, Gu Z, Li M, Gong X (2009) Morphological and molecular phylogenetic analysis of two Saprolegnia sp. (oomycetes) isolated from silver crucian carp and zebra fish. Mycol Res 113(5):637–644

    CAS  PubMed  Google Scholar 

  • Khulbe RD (2009) Pathogenicity of some species of Pythium Pringsheim on certain fresh water temperate fishes. Mycoses 26:273–275

    Google Scholar 

  • Khulbe RD, Chandra J, Bisht GS (1995) Fungal diseases of fish in Nanak Sagar, Nainital, India. Mycopathologia 130(2):71–74

    CAS  PubMed  Google Scholar 

  • Kortekamp A (2005) Growth, occurrence and development of septa in Plasmopara viticola and other members of the Peronosporaceae using light- and epifluorescence-microscopy. Mycol Res 109(Pt 5):640–648

    PubMed  Google Scholar 

  • Leaño EM (2001) Fungal diseases. In: Lio-Po GD, Lavilla CR, Cruz-Lacierda ER (eds) Health management in aquaculture. Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, pp 43–53

    Google Scholar 

  • Lilley JH, Cerenius L, Söderhäll K (1997a) RAPD evidence for the origin of crayfish plague outbreaks in Britain. Aquaculture 157:181–185

    Google Scholar 

  • Lilley JH, Thompson KD, Adams A (1997b) Characterization of Aphanomyces invadans by electrophoresis and Western blot analysis. Dis Aquat Organ 30:187–197

    CAS  Google Scholar 

  • Lipman NS, Jackson LR, Trudel LJ, s Weis-Garcia F. (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46(3):258–268

    CAS  PubMed  Google Scholar 

  • Liu S, Song P, Ou R, Fang W, Lin M, Ruan J, Yang X, Hu K (2017) Sequence analysis and ty** of Saprolegnia strains isolated from freshwater fish from Southern Chinese regions. Aquac Fish 2:227e233

    Google Scholar 

  • Miles DJC, Thompson KD, Lilley JH, Adams A (2003) Immunofluorescence of the epizootic ulcerative syndrome pathogen, Aphanomyces invadans, using a monoclonal antibody. Dis Aquat Organ 55:77–84

    PubMed  Google Scholar 

  • Molina FI, Jong SC, Ma G (1995) Molecular characterization and identification of Saprolegnia by restriction analysis of genes coding for ribosomal RNA. Antonie Van Leeuwenhoek 68(1):65–74

    CAS  PubMed  Google Scholar 

  • Mondal SK, De AB (2002) A fatal oomycotic disease of the fresh water fish Aplocheilus panchax in India caused by Aphanomyces laevis. Mycopathologia 154:21–24

    CAS  PubMed  Google Scholar 

  • Morshed MG, Lee MK, Jorgensen D, Isaac-Renton JL (2007) Molecular methods used in clinical laboratory: prospects and pitfalls. FEMS Immunol Med Microbiol 49(2):184–191

    CAS  PubMed  Google Scholar 

  • Parra-Laca R, Hernández-Hernández FC, Lanz-Mendoza H, Borrego Enríquez LE, Gil FLG (2015) Isolation and identification of Saprolegnia sp. from freshwater aquarium fishes and the hemolymph immune response of Dactylopius coccus costa de 1835 (Homoptera: Coccoidea: Dactylopidae) against this oomycete. Entomol Ornithol Herpetol 4:149

    Google Scholar 

  • Phillips AJ, Anderson VL, Robertson EJ, Secombes CJ, van West P (2008) New insights into animal pathogenic oomycetes. Trends Microbiol 16:13–19

    CAS  PubMed  Google Scholar 

  • Pickering AD, Christie P (1980) Sexual differences in the incidence and severity of ectoparasitic infestation of the brown trout, Salmo trutta L. J Fish Biol 16(6):669–683

    Google Scholar 

  • Ravindra KR, Ahmad N, Verma DK, Kantharajan G, Kumar CB, Paria A, Swaminathan TR, Rathore G, Sood N, Pradhan PK, Lal KK, Jena JK (2022) Mortalities in cultured Pangasianodon hypophthalmus due to oomycete Saprolegnia parasitica infection in Uttar Pradesh, India. Aquac Rep 23:101047

    Google Scholar 

  • Rezinciuc S, Galindo J, Montserrat J, Diéguez-Uribeondo J (2014) AFLP-PCR and RAPD-PCR evidences of the transmission of the pathogen Aphanomyces astaci (oomycetes) to wild populations of European crayfish from the invasive crayfish species, Procambarus clarkii. Fungal Biol 118(7):612–620

    CAS  PubMed  Google Scholar 

  • Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11(6):1002–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocchi S, Tisserant M, Valot B, Laboissière A, Frossard V, Reboux G (2017) Quantification of Saprolegnia parasitica in river water using real-time quantitative PCR: from massive fish mortality to tap drinking water. Int J Environ Health Res 27(1):1–10

    CAS  PubMed  Google Scholar 

  • Sabeta C, Ngoepe E (2015) Chapter seven preparation of fluorescent antibody conjugate in goats. In: Rupprecht C, Nagarajan T (eds) Current laboratory techniques in rabies diagnosis, research and prevention, vol 2. Academic Press, Washington, DC, pp 69–81

    Google Scholar 

  • Sandoval-Sierra JV, Diéguez-Uribeondo J (2015) A comprehensive protocol for improving the description of saprolegniales (oomycota): two practical examples (Saprolegnia aenigmatica sp. nov and Saprolegnia racemosa sp nov). PLoS One 10(7):e0132999

    PubMed  PubMed Central  Google Scholar 

  • Sandoval-Sierra JV, Martín MP, Diéguez-Uribeondo J (2014) Species identification in the genus Saprolegnia (oomycetes): defining DNA-based molecular operational taxonomic units. Fungal Biol 118(7):559–578

    CAS  PubMed  Google Scholar 

  • Sarowar MN, van den Berg AH, McLaggan D, Young MR, van West P (2013) Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biol 117(11–12):752–763

    CAS  PubMed  Google Scholar 

  • Sati SC (1991) Aquatic fungi parasitic on temperate fishes of Kumaun Himalaya, India. Mycoses 34:437–441

    CAS  PubMed  Google Scholar 

  • Shin S, Kulatunga D, Dananjaya S, Nikapitiya C, Lee J, De Zoysa M (2017) Saprolegnia parasitica isolated from rainbow trout in Korea: characterization, anti-saprolegnia activity and host pathogen interaction in zebrafish disease model. Mycobiology 45:297–311

    PubMed  PubMed Central  Google Scholar 

  • Sosa ER, Landsberg JH, Stephenson CM, Forstchen AB, Vandersea MW, Litaker RW (2007) Aphanomyces invadans and ulcerative mycosis in estuarine and freshwater fish in Florida. J Aquat Anim Health 19(1):14–26

    PubMed  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329

    CAS  PubMed  Google Scholar 

  • Stueland S, Hatai K, Skaar I (2005) Morphological and physiological characteristics of Saprolegnia spp. strains pathogenic to Atlantic salmon, Salmo salar L. J Fish Dis 28(8):445–453

    CAS  PubMed  Google Scholar 

  • Takuma D, Sano A, Wada S, Kurata O, Hatai K (2010) A new species, Aphanomyces salsuginosus sp. nov., isolated from ice fish Salangichthys microdon. Mycoscience 51:432–442

    Google Scholar 

  • Van der Auwera G, De Baere R, Van de Peer Y, De Rijk P, Van den Broeck I, De Wachter R (1995) The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides. Mol Biol Evol 12(4):671–678

    PubMed  Google Scholar 

  • van West P (2006) Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist 20:99–104

    Google Scholar 

  • Vandersea MW, Litaker RW, Yonnish B, Sosa E, Landsberg JH, Pullinger C, Moon-Butzin P, Green J, Morris JA, Kator H, Noga EJ, Tester PA (2006) Molecular assays for detecting Aphanomyces invadans in ulcerative mycotic fish lesions. Appl Environ Microbiol 72(2):1551–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Marc ZM (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CA, van West P (2007) Zoospore development in the oomycetes. Fungal Biol Rev 21(1):10–18

    Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, pp 315–322

    Google Scholar 

  • Willoughby LG (1978) Saprolegnias of salmonid fish in Windermere: a critical analysis. J Fish Dis 1(1):51–67

    Google Scholar 

  • Willoughby LG (1985) Rapid preliminary screening of Saprolegnia on fish. J Fish Dis 8:473–476

    Google Scholar 

  • Yuasa K, Kitancharoen N, Hatai K (1997) Simple method to distinguish between Saprolegnia parasitica and saprolegnia diclina isolated from fishes with saprolegniasis. Fish Pathol 32:175–176

    Google Scholar 

  • Zaidi N, Konstantinou K, Zervos M (2003) The role of molecular biology and nucleic acid technology in the study of human infection and epidemiology. Arch Pathol Lab Med 127(9):1098–1105

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khangembam Victoria Chanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanu, K.V., Thakuria, D. (2023). Advances in Detection Techniques for Fungus-like Organisms of Aquaculture Importance. In: Pandey, P.K., Pandey, N., Akhtar, M.S. (eds) Fisheries and Aquaculture of the Temperate Himalayas. Springer, Singapore. https://doi.org/10.1007/978-981-19-8303-0_18

Download citation

Publish with us

Policies and ethics

Navigation