Degradation of Textile Waste for Environmental Protection

  • Chapter
  • First Online:
Nano-engineered Materials for Textile Waste Remediation

Abstract

The drastic increase in population along with rapid industrialization to satisfy the modern lifestyle has dragged the earth’s health into an alarming situation of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sivaram NM, Gopal PM, Barik D (2019) Chapter 4—Toxic waste from textile industries. In: Barik D (ed) Energy from toxic organic waste for heat and power generation. Woodhead Publishing, pp 43–54

    Google Scholar 

  2. Behera M, Nayak J, Banerjee S, Chakrabortty S, Tripathy SK (2021) A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J Environ Chem Eng 9:105277

    Article  Google Scholar 

  3. Rongrong L, Xujie L, Qing T, Bo Y, Jihua C (2011) The performance evaluation of hybrid anaerobic baffled reactor for treatment of PVA-containing desizing wastewater. Desalination 271:287–294

    Article  Google Scholar 

  4. Cai H, Liang J, Ning X-A, Lai X, Li Y (2020) Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. J Environ Sci 91:199–208

    Article  Google Scholar 

  5. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LF, Bilal M, Chandra R, Bharagava RN (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng 9:105012

    Google Scholar 

  6. Padban N, Odenbrand I (1999) Polynuclear aromatic hydrocarbons in fly ash from pressurized fluidized bed gasification of fuel blends. a discussion of the contribution of textile to PAHs. Energy Fuels 13:1067–1073

    Google Scholar 

  7. Halimi MT, Hassen MB, Sakli F (2008) Cotton waste recycling: quantitative and qualitative assessment. Res Conser Recycl 52:785–791

    Article  Google Scholar 

  8. Ito T, Shimada Y, Suto T (2018) Potential use of bacteria collected from human hands for textile dye decolorization. Water Res Ind 20:46–53

    Article  Google Scholar 

  9. Al-Tohamy R, Sun J, Fareed MF, Kenawy E-R, Ali SS (2020) Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci Rep 10:12370

    Article  ADS  Google Scholar 

  10. Ranjithkumar M, Ravikumar R, Sankar MK, Kumar MN, Thanabal V (2017) An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass Valor 8:57–68

    Article  Google Scholar 

  11. Goud BS, Cha HL, Koyyada G, Kim JH (2020) Augmented biodegradation of textile azo dye effluents by plant endophytes: a sustainable, eco-friendly alternative. Curr Microbiol 77:3240–3255

    Article  Google Scholar 

  12. Cheung YH, Ma K, van Leeuwen HC, Wasson MC, Wang X, Idrees KB, Gong W, Cao R, Mahle JJ, Islamoglu T, Peterson GW, de Koning MC, **n JH, Farha OK (2021) Immobilized regenerable active chlorine within a zirconium-based mof textile composite to eliminate biological and chemical threats. J Am Chem Soc 143:16777–16785

    Article  Google Scholar 

  13. Das GS, Shim JP, Bhatnagar A, Tripathi KM, Kim T (2019) Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(III) and ascorbic acid. Sci Rep 9:15084

    Article  ADS  Google Scholar 

  14. Tripathi KM, Tran TS, Kim YJ, Kim T (2017) Green fluorescent onion-like carbon nanoparticles from flaxseed oil for visible light induced photocatalytic applications and label-free detection of Al(III) Ions. ACS Sustain Chem Eng 5:3982–3992

    Article  Google Scholar 

  15. Myung Y, Jung S, Tung TT, Tripathi KM, Kim T (2019) Graphene-based aerogels derived from biomass for energy storage and environmental remediation. ACS Sustain Chem Eng 7:3772–3782

    Article  Google Scholar 

  16. Dhiman N, Mohanty P (2019) A nitrogen and phosphorus enriched pyridine bridged inorganic–organic hybrid material for supercapacitor application. New J Chem 43:16670–16675

    Article  Google Scholar 

  17. Dhiman N, Pradhan D, Mohanty P (2022) Heteroatom (N and P) enriched nanoporous carbon as an efficient electrocatalyst for hydrazine oxidation reaction. Fuel 314:122722

    Article  Google Scholar 

  18. Dhiman N, Ghosh S, Mishra Y, Tripathi K (2022) Prospects of nano-carbons as emerging catalyst for the enzyme-mimetic applications. Mater Adv 3:3101

    Google Scholar 

  19. Silva TL, Cazetta AL, Zhang T, Koh K, Silva R, Asefa T, Almeida VC (2019) Nanoporous heteroatom-doped carbons derived from cotton waste: efficient hydrazine oxidation electrocatalysts. ACS Appl Energy Mater 2:2313–2323

    Article  Google Scholar 

  20. Sharma A, Sharma RK, Kim Y-K, Lee H-J, Tripathi KM (2021) Upgrading of seafood waste as a carbon source: nano-world outlook. J Environ Chem Eng 9:106656

    Article  Google Scholar 

  21. Sahani S, Malika Tripathi K, Il Lee T, Dubal DP, Wong C-P, Chandra Sharma Y, Young Kim T (2022) Recent advances in photocatalytic carbon-based materials for enhanced water splitting under visible-light irradiation. Energy Convers Manag 252:115133

    Google Scholar 

  22. Kumari P, Tripathi KM, Jangir LK, Gupta R, Awasthi K (2021) Recent advances in application of the graphene-based membrane for water purification. Mater Today Chem 22:100597

    Article  Google Scholar 

  23. Jiang G, Senthil RA, Sun Y, Kumar TR, Pan J (2022) Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors. J Power Sour 520:230886

    Article  Google Scholar 

  24. Sauid SM, Kamarudin SK, Karim NA, Shyuan LK (2021) Superior stability and methanol tolerance of a metal-free nitrogen-doped hierarchical porous carbon electrocatalyst derived from textile waste. J Mater Res Technol 11:1834–1846

    Article  Google Scholar 

  25. Das GS, Tripathi KM, Kumar G, Paul S, Mehara S, Bhowmik S, Pakhira B, Sarkar S, Roy M, Kim T (2019) Nitrogen-doped fluorescent graphene nanosheets as visible-light-driven photocatalysts for dye degradation and selective sensing of ascorbic acid. New J Chem 43:14575–14583

    Article  Google Scholar 

  26. Santhosh C, Daneshvar E, Tripathi KM, Baltrėnas P, Kim T, Baltrėnaitė E, Bhatnagar A (2020) Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environ Sci Poll Res 27:32874–32887

    Article  Google Scholar 

  27. Bhati A, Singh A, Tripathi KM, Sonkar SK (2016) Sunlight-induced photochemical degradation of methylene blue by water-soluble carbon nanorods. Int J Photoenergy 2016:2583821

    Article  Google Scholar 

  28. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026

    Google Scholar 

  29. Zheng P, Bai B, Guan W, Wang H, Suo Y (2016) Degradation of tetracycline hydrochloride by heterogeneous Fenton-like reaction using Fe@Bacillus subtilis. RSC Adv 6:4101–4107

    Article  ADS  Google Scholar 

  30. Nelson WM, Tkachenko V, Delawder T, Marsch D (2004) Enzymatic microbial degradation: in-process bioremediation of organic waste-containing aqueous solvents. Agricul Appl Green Chem Am Chem Soc 141–157

    Google Scholar 

  31. Chen SH, Yien Ting AS (2015) Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. Int Biodeter Biodegrad 103:1–7

    Google Scholar 

  32. Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  Google Scholar 

  33. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    Article  Google Scholar 

  34. Fu Z, Zhang Y, Wang X (2011) Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter. Bioresour Technol 102:3748–3753

    Article  Google Scholar 

  35. Palamthodi S, Patil D, Patil Y (2011) Microbial degradation of textile industrial effluents. African J Biotechnol 10:12657–12661

    Google Scholar 

  36. Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Engineering, degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2:121–131

    Google Scholar 

  37. McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87

    Article  Google Scholar 

  38. Regmi C, Joshi B, Ray SK, Gyawali G, Pandey RP (2018) Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front Chem 6

    Google Scholar 

  39. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    Google Scholar 

  40. Togo CA, Mutambanengwe CC, Whiteley CG (2008) Decolourisation and degradation of textile dyes using a sulphate reducing bacteria (SRB)—Biodigester microflora co-culture. African J Biotechnol 7

    Google Scholar 

  41. Balamurugan B, Thirumarimurugan M, Kannadasan TJBT (2011) Anaerobic degradation of textile dye bath effluent using Halomonas sp. Biores Technol 102:6365–6369

    Article  Google Scholar 

  42. Meng X, Liu G, Zhou J, Fu QS (2014) Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions. Biores Technol 151:63–68

    Article  Google Scholar 

  43. Li S, Huang J, Mao J, Zhang L, He C, Chen G, Parkin IP, Lai Y (2019) In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent. Nanoscale Adv 1:168–176

    Article  ADS  Google Scholar 

  44. Bento RMF, Almeida MR, Bharmoria P, Freire MG, Tavares APM (2020) Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Sep Purif Technol 235:116191

    Article  Google Scholar 

  45. Oliveira JMS, de Lima e Silva MR, Issa CG, Corbi JJ, Damianovic MHRZ, Foresti E (2020) Intermittent aeration strategy for azo dye biodegradation: a suitable alternative to conventional biological treatments? J Hazard Mater 385:121558

    Google Scholar 

  46. Shah MP (2013) Microbiology, microbial degradation of textile dye (Remazol Black B) by Bacillus spp. ETL-2012. J Appl Environ Microbiol 1:6–11

    Google Scholar 

  47. Chen SH, Yien Ting AS (2015) Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J Environ Manag 150:274–280

    Google Scholar 

  48. Agarry SE, Ajani AO, Evaluation of microbial systems for biotreatment of textile waste effluents in nigeria: biodecolourization and biodegradation of textile dye. J Appl Sci Environ Manag 15:79–86

    Google Scholar 

  49. Hayat H, Mahmood Q, Pervez A, Bhatti ZA, Baig SA (2015) Comparative decolorization of dyes in textile wastewater using biological and chemical treatment. Sep Purif Technol 154:149–153

    Article  Google Scholar 

  50. Chhabra M, Mishra S, Sreekrishnan TR (2015) Combination of chemical and enzymatic treatment for efficient decolorization/degradation of textile effluent: high operational stability of the continuous process. Biochem Eng J 93:17–24

    Article  Google Scholar 

  51. Britos CN, Gianolini JE, Portillo H, Trelles JA (2018) Biodegradation of industrial dyes by a solvent, metal and surfactant-stable extracellular bacterial laccase, Biocatal. Agric Biotechnol 14:221–227

    Article  Google Scholar 

  52. Tamboli DP, Kurade MB, Waghmode TR, Joshi SM, Govindwar SP (2010) Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation. J Hazard Mater 182:169–176

    Google Scholar 

  53. Rodrigues CSD, Madeira LM, Boaventura RAR (2014) Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes—Performance analysis with costs reduction. J Environ Chem Eng 2:1027–1039

    Article  Google Scholar 

  54. Kumar V, Misra N, Goel NK, Thakar R, Gupta J, Varshney L (2016) A horseradish peroxidase immobilized radiation grafted polymer matrix: a biocatalytic system for dye waste water treatment. RSC Adv 6:2974–2981

    Article  ADS  Google Scholar 

  55. Liang Z, Wang J, Zhang Y, Han C, Ma S, Chen J, Li G, An T (2020) Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. J Clean Prod 253:120019

    Article  Google Scholar 

  56. Balapure K, Bhatt N, Madamwar D (2015) Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Biores Technol 175:1–7

    Article  Google Scholar 

  57. Asghar A, Abdul Raman AA, Wan Daud WMA (2015) Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J Clean Prod 87:826–838

    Google Scholar 

  58. Peña M, Coca M, González G, Rioja R, García MT (2003) Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere 51:893–900

    Article  ADS  Google Scholar 

  59. Coca M, Peña M, González G (2005) Variables affecting efficiency of molasses fermentation wastewater ozonation. Chemosphere 60:1408–1415

    Article  ADS  Google Scholar 

  60. Muthukumar M, Sargunamani D, Selvakumar N (2005) Statistical analysis of the effect of aromatic, azo and sulphonic acid groups on decolouration of acid dye effluents using advanced oxidation processes. Dyes Pigment 65:151–158

    Article  Google Scholar 

  61. Khuntia S, Majumder SK, Ghosh P (2016) Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt. J Environ Chem Eng 4:2250–2258

    Article  Google Scholar 

  62. Mia MS, Yao P, Zhu X, Lei X, **ng T, Chen G (2021) Degradation of textile dyes from aqueous solution using tea-polyphenol/Fe loaded waste silk fabrics as Fenton-like catalysts. RSC Adv 11:8290–8305

    Article  ADS  Google Scholar 

  63. Chatterjee S, Guha N, Krishnan S, Singh AK, Mathur P, Rai DK (2020) Selective and recyclable congo red dye adsorption by spherical Fe3O4 nanoparticles functionalized with 1,2,4,5-benzenetetracarboxylic acid. Sci Rep 10:111

    Article  ADS  Google Scholar 

  64. Shen L, Sun J, Lin C, Zhang Y, Yang Z, Chen SJRA (2015) Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge by O3/H2O2 treatment. RSC Adv 5:38021–38029

    Article  ADS  Google Scholar 

  65. Tehrani-Bagha AR, Mahmoodi NM, Menger FM (2010) Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination 260:34–38

    Article  Google Scholar 

  66. Ashraf SS, Rauf MA, Alhadrami S (2006) Degradation of Methyl Red using Fenton’s reagent and the effect of various salts. Dyes Pigment 69:74–78

    Article  Google Scholar 

  67. Balanosky E, Herrera F, Lopez A, Kiwi JJWR (2000) Oxidative degradation of textile waste water modeling reactor performance. Water Res 34:582–596

    Article  Google Scholar 

  68. Aplin R, Waite TJWS (2000) Technology, comparison of three advanced oxidation processes for degradation of textile dyes. Water Sci Technol 42:345–354

    Article  Google Scholar 

  69. Muhammad R, Mohanty P (2017) Nitrogen enriched triazine bridged mesoporous organosilicas for CO2 capture and dye adsorption applications. J Mol Liq 248:127–134

    Google Scholar 

  70. Rekha P, Muhammad R, Sharma V, Ramteke M, Mohanty P (2016) Unprecedented adsorptive removal of Cr2O7 2—and methyl orange by using a low surface area organosilica. J Mater Chem A 4:17866–17874

    Article  Google Scholar 

  71. Sharma V, Rekha P, Mohanty P (2016) Nanoporous hypercrosslinked polyaniline: an efficient adsorbent for the adsorptive removal of cationic and anionic dyes. J Mol Liq 222:1091–1100

    Article  Google Scholar 

  72. Kaushik J, Kumar V, Garg AK, Dubey P, Tripathi KM, Sonkar SK (2021) Bio-mass derived functionalized graphene aerogel: a sustainable approach for the removal of multiple organic dyes and their mixtures. New J Chem 45:9073–9083

    Article  Google Scholar 

  73. Wambuguh D, Chianelli RR (2008) Indigo dye waste recovery from blue denim textile effluent: a by-product synergy approach. New J Chem 32:2189–2194

    Article  Google Scholar 

  74. Wang J, Jiang J, Ding J, Wang X, Sun Y, Ruan R, Ragauskas AJ, Ok YS, Tsang DCW (2021) Promoting Diels-Alder reactions to produce bio-BTX: co-aromatization of textile waste and plastic waste over USY zeolite. J Clean Prod 314:127966

    Article  Google Scholar 

  75. Gao S, Su J, Wang M, Wei X, Zheng X, Jiang T (2016) Electrochemical oxidation degradation of azobenzene dye self-powered by multilayer-linkage triboelectric nanogenerator. Nano Energy 30:52–58

    Google Scholar 

  76. Padmanaban A, Murugadoss G, Venkatesh N, Hazra S, Kumar MR, Tamilselvi R, Sakthivel P (2021) Electrochemical determination of harmful catechol and rapid decolorization of textile dyes using ceria and tin doped ZnO nanoparticles. J Environ Chem Eng 9:105976

    Google Scholar 

  77. Rodríguez-Narváez OM, Picos AR, Bravo-Yumi N, Pacheco-Alvarez M, Martínez-Huitle CA, Peralta-Hernández JM (2021) Electrochemical oxidation technology to treat textile wastewaters. Curr Opin Electrochem 29:100806

    Article  Google Scholar 

  78. Singh S, Srivastava VC, Mall ID (2013) Multistep optimization and residue disposal study for electrochemical treatment of textile wastewater using aluminum electrode. Int J Chem React Eng 11:31–46

    Article  Google Scholar 

  79. Lin J, Lin F, Chen X, Ye W, Li X, Zeng H, Van der Bruggen B (2019) Sustainable management of textile wastewater: a hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind Eng Chem Res 58:11003–11012

    Article  Google Scholar 

  80. Singh S, Srivastava VC, Mall ID (2013) Mechanism of dye degradation during electrochemical treatment. J Phys Chem C 117:15229–15240

    Article  Google Scholar 

  81. Jiang C, Liu L, Crittenden JC (2016) An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Front Environ Sci Eng 10:15

    Article  Google Scholar 

  82. Singh S, Kumar N, Kumar M, Agarwal A, Mizaikoff B (2017) Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem J Eng 313:283–292

    Google Scholar 

  83. Zhang Y, Wu L, Lei W, **a X, **a M, Hao Q (2014) Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode. Electrochim Acta 146:568–576

    Article  Google Scholar 

  84. Reddy NR, Kumari MM, Shankar MV, Reddy KR, Joo SW, Aminabhavi TM (2021) Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO2 nanoflower heterogeneous catalysts. J Environ Manag 277:111433

    Google Scholar 

  85. Nagajyothi PC, Prabhakar Vattikuti SV, Devarayapalli KC, Yoo K, Shim J, Sreekanth TVM (2020) Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit Rev Environ Sci Technol 50:2617–2723

    Google Scholar 

  86. Neppolian B, Sakthivel S, Arabindoo B, Palanichamy M, Murugesan V (1998) Photocatalytic degradation of textile dye commonly used in cotton fabrics. In: Rao TSRP, Dhar GM (eds) Studies in surface science and catalysis. Elsevier, pp 329–335

    Google Scholar 

  87. Asha S, Hentry C, Bindhu MR, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS (2021) Improved photocatalytic activity for degradation of textile dyeing waste water and thiazine dyes using PbWO4 nanoparticles synthesized by co-precipitation method. Environ Res 200:111721

    Article  Google Scholar 

  88. Gümüş D, Akbal F (2011) Photocatalytic degradation of textile dye and wastewater. Water Air Soil Pollut 216:117–124

    Article  ADS  Google Scholar 

  89. Ancy K, Bindhu MR, Bai JS, Gatasheh MK, Hatamleh AA, Ilavenil S (2022) Photocatalytic degradation of organic synthetic dyes and textile dyeing waste water by Al and F co-doped TiO2 nanoparticles. Environ Res 206:112492

    Article  Google Scholar 

  90. Kar A, Smith YR, Subramanian V (2009) Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ Sci Technol 43:3260–3265

    Article  ADS  Google Scholar 

  91. Singh A, Bhati A, Khare P, Tripathi KM, Sonkar SK (2019) Soluble graphene nanosheets for the sunlight-induced photodegradation of the mixture of dyes and its environmental assessment. Sci Rep 9:2522

    Google Scholar 

  92. Kaushik J, Kumar V, Tripathi KM, Sonkar SK (2022) Sunlight-promoted photodegradation of Congo red by cadmium-sulfide decorated graphene aerogel. Chemosphere 287:132225

    Google Scholar 

  93. ElMetwally AE, Eshaq G, Al-Sabagh AM, Yehia FZ, Philip CA, Moussa NA, ElShafei GMS (2019) Insight into heterogeneous Fenton-sonophotocatalytic degradation of nitrobenzene using metal oxychlorides. Sep Purif Technol 210:452–462

    Article  Google Scholar 

  94. Sivachidambaram M, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Al-Lohedan HA, Jothi Ramalingam R (2017) A novel synthesis protocol for CO3O4 nanocatalysts and their catalytic applications. RSC Adv 7:38861–38870

    Google Scholar 

  95. Bindhu MR, Saranya P, Sheeba M, Vijilvani C, Re**iemon TS, Al-Mohaimeed AM, AbdelGawwad MR, Elshikh MS (2021) Functionalization of gold nanoparticles by β-cyclodextrin as a probe for the detection of heavy metals in water and photocatalytic degradation of textile dye. Environ Res 201:111628

    Article  Google Scholar 

  96. Kavitha SR, Umadevi M, Janani SR, Balakrishnan T, Ramanibai R (2014) Fluorescence quenching and photocatalytic degradation of textile dyeing waste water by silver nanoparticles, Spectrochim. Acta Part A: Mol Biomol. Spectrosc. 127:115–121

    Article  ADS  Google Scholar 

  97. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46:1173–1181

    Article  ADS  Google Scholar 

  98. Bessy TC, Bindhu MR, Johnson J, Chen S-M, Chen T-W, Almaary KS (2022) UV light assisted photocatalytic degradation of textile waste water by Mg0.8–xZnxFe2O4 synthesized by combustion method and in-vitro antimicrobial activities. Environ Res 204:111917

    Google Scholar 

  99. Das A, Deka T, Kumar PM, Bhagavathiachari M, Nair RG (2022) Ag-modified ZnO nanorods and its dual application in visible light-driven photoelectrochemical water oxidation and photocatalytic dye degradation: A correlation between optical and electrochemical properties. Adv Powder Technol 33:103434

    Article  Google Scholar 

  100. Jayapriya M, Arulmozhi M (2021) Beta vulgaris peel extract mediated synthesis of Ag/TiO2 nanocomposite: characterization, evaluation of antibacterial and catalytic degradation of textile dyes-an electron relay effect. Inorg Chem Commun 128:108529

    Article  Google Scholar 

  101. Vinodgopal K, Bedja I, Kamat PV (1996) Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 Composite systems and its role in photocatalytic degradation of a textile azo dye. Chem Mater 8:2180–2187

    Google Scholar 

  102. Danwittayakul S, Jaisai M, Dutta J (2015) Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Appl Catal B: Environ 163:1–8

    Article  Google Scholar 

  103. Zikalala SA, Chabalala MB, Gumbi NN, Coville NJ, Mamba BB, Mutuma BK, Nxumalo EN (2021) Microwave-assisted synthesis of titania—Amorphous carbon nanotubes/amorphous nitrogen-doped carbon nanotubes nanohybrids for photocatalytic degradation of textile wastewater. RSC Adv 11:6748–6763

    Article  ADS  Google Scholar 

  104. Su J, Fan Y, Yan Y, Liu T, Li H, Li Z, Song F (2021) A one-pot synthesis of AgBr/Ag3PO4 composite photocatalysts. RSC Adv 11:9865–9873

    Article  ADS  Google Scholar 

  105. Mohammadzadeh Kakhki R, Khorrampoor A, Rabbani M, Ahsani F (2017) Visible light photocatalytic degradation of textile waste water by Co doped NiFe2O4 nanocomposite. J Mater Sci: Mater Electron 28:4095–4101

    Google Scholar 

  106. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng: C 33:91–98

    Google Scholar 

  107. Rajkumar K, Vairaselvi P, Saravanan P, Vinod VTP, Černík M, Rajendra Kumar RT (2015) Visible-light-driven SnO2/TiO2 nanotube nanocomposite for textile effluent degradation. RSC Adv 5:20424–20431

    Google Scholar 

  108. Behpour M, Foulady-Dehaghi R, Mir N (2017) Considering photocatalytic activity of N/F/S-doped TiO2 thin films in degradation of textile waste under visible and sunlight irradiation. Sol Energy 158:636–643

    Article  ADS  Google Scholar 

  109. Park SJ, Das GS, Schütt F, Adelung R, Mishra YK, Tripathi KM, Kim T (2019) Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater 11:8

    Article  ADS  Google Scholar 

  110. Balaji C, Moholkar VS, Pandit AB, Ashokkumar M (2011) Mechanistic investigations on sonophotocatalytic degradation of textile dyes with surface active solutes. Ind Eng Chem Res 50:11485–11494

    Article  Google Scholar 

  111. Sivachidambaram M, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Al-Lohedan HA, Ramalingam RJ (2017) A novel synthesis protocol for CO3O4 nanocatalysts and their catalytic applications. RSC Adv 7:38861–38870

    Google Scholar 

  112. Peters GM, Sandin G, Spak B (2019) Environmental prospects for mixed textile recycling in Sweden. ACS Sustain Chem Eng 7:11682–11690

    Article  Google Scholar 

  113. Khandaker S, Bashar MM, Islam A, Hossain MT, Teo SH, Awual MR (2022) Sustainable energy generation from textile biowaste and its challenges: a comprehensive review. Renew Sustain Energy Rev 157:112051

    Article  Google Scholar 

  114. Elsa G, Vijayakumar M, Navaneethan R, Karthik M (2022) Novel insight into the concept of favorable combination of electrodes in high voltage supercapacitors: toward ultrahigh volumetric energy density and outstanding rate capability. Glob Challenge n/a:2100139

    Google Scholar 

  115. Bi H, Liu Z, Xu F, Tang Y, Lin T, Huang F (2016) Three-dimensional porous graphene-like carbon cloth from cotton as a free-standing lithium-ion battery anode. J Mater Chem A 4:11762–11767

    Article  Google Scholar 

  116. Chen W, Zhang S, He F, Lu W, Xv H (2019) Porosity and surface chemistry development and thermal degradation of textile waste jute during recycling as activated carbon. J Mater Cycles Waste Manag 21:315–325

    Article  Google Scholar 

  117. Nahil MA, Williams PT (2010) Activated carbons from acrylic textile waste. J Anal Appl Pyrolys 89:51–59

    Article  Google Scholar 

  118. Cuiffo M, Jung HJ, Skocir A, Schiros T, Evans E, Orlando E, Lin Y-C, Fang Y, Rafailovich M, Kim T, Halada G (2021) Thermochemical degradation of cotton fabric under mild conditions. Fash Text 8:25

    Article  Google Scholar 

  119. Tang Y, Ma X, Wang Z, Wu Z, Yu Q (2017) A study of the thermal degradation of six typical municipal waste components in CO2 and N2 atmospheres using TGA-FTIR. Thermochim Acta 657:12–19

    Article  Google Scholar 

  120. Araújo RS, Rezende CC, Marques MF, Ferreira LC, Russo P, Emanuela Errico M, Avolio R, Avella M, Gentile G (2017) Polypropylene‐based composites reinforced with textile wastes. J Appl Polym Sci 134:45060

    Google Scholar 

  121. Wienchol P, Korus A, Szlęk A, Ditaranto M (2022) Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions. Energy 248:123573

    Article  Google Scholar 

  122. Wahab MA, Ates F, Yildirir E, Miskolczi N (2022) Investigation of thermal degradation kinetics and catalytic pyrolysis of industrial sludge produced from textile and leather industrial wastewater. Biomass Conv Bioref

    Google Scholar 

  123. Yousef S, Tatariants M, Tichonovas M, Sarwar Z, Jonuškienė I, Kliucininkas L (2019) A new strategy for using textile waste as a sustainable source of recovered cotton. Res Conser Recycl 145:359–369

    Article  Google Scholar 

  124. Zhao Y, Chen W, Liu F, Zhao P (2022) Hydrothermal pretreatment of cotton textile wastes: biofuel characteristics and biochar electrocatalytic performance. Fuel 316:123327

    Article  Google Scholar 

  125. Wu Y, Luo Z, Wang X, Fu G, Lei W, Zou Y, Yin B, Ma Z, Pan Y, Jiang W (2022) Cotton-like CNTs/(Ni-P)/S composites with enhanced electrochemical performance of lithium-sulfur battery. Mater Res Bull 145:111529

    Article  Google Scholar 

  126. Ramesh Reddy N, Mamatha Kumari M, Shankar MV, Raghava Reddy K, Woo Joo S, Aminabhavi TM (2021) Photocatalytic hydrogen production from dye contaminated water and electrochemical supercapacitors using carbon nanohorns and TiO2 nanoflower heterogeneous catalysts. J Environ Manag 277:111433

    Google Scholar 

  127. Wang F, Zhang Y, Wang Y (2021) Recycling of waste cotton sheets into three-dimensional biodegradable carriers for removal of methylene Blue. ACS Omega 6:34314–34326

    Article  Google Scholar 

  128. Zhou X, Wang P, Zhang Y, Zhang X, Jiang Y (2016) From waste cotton linter: a renewable environment-friendly biomass based carbon fibers preparation. ACS Sustain Chem Eng 4:5585–5593

    Article  Google Scholar 

  129. Li Y, Shao M, Huang M, Sang W, Zheng S, Jiang N, Gao Y (2022) Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. Chemosphere 286:131470

    Article  ADS  Google Scholar 

  130. Yin W, Zhan X, Fang P, **a M, Yu J, Chi R-A (2019) A facile one-pot strategy to functionalize graphene oxide with poly(amino-phosphonic acid) derived from wasted acrylic fibers for effective Gd(III) capture. ACS Sustain Chem Eng 7:19857–19869

    Article  Google Scholar 

  131. **ng X, Bu Y, Miao Y, Zhang X, Zhang X (2022) Synergistical enhancement of the electrocatalysis of N-doped porous carbon for fuel cell application. Sustain Energy Technol Assess 51:101904

    Google Scholar 

  132. Liu K, Yu JC-C, Dong H, Wu JCS, Hoffmann MR (2018) Degradation and mineralization of carbamazepine using an electro-fenton reaction catalyzed by magnetite nanoparticles fixed on an electrocatalytic carbon fiber textile cathode. Environ Sci Technol 52:12667–12674

    Article  ADS  Google Scholar 

  133. Bansal A, Illukpitiya P, Tegegne F, Singh SP (2016) Energy efficiency of ethanol production from cellulosic feedstock. Renew Sustain Energy Rev 58:141–146

    Article  Google Scholar 

  134. Wang S, Ye D, Liu Z, Zhu X, Chen R, Liao Q, Yang Y, Liu H (2022) A flexible on-fiber H2O2 microfluidic fuel cell with high power density. Int J Hydrog Energy 47:4793–4803

    Article  Google Scholar 

  135. Solanki K, Subramanian S, Basu S (2013) Microbial fuel cells for azo dye treatment with electricity generation: a review. Biores Technol 131:564–571

    Article  Google Scholar 

  136. Li W-W, Yu H-Q, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  Google Scholar 

  137. Bedin KC, Cazetta AL, Souza IPAF, Spessato L, Zhang T, Araújo RA, Silva R, Asefa T, Almeida VC (2022) N-doped spherical activated carbon from dye adsorption: bifunctional electrocatalyst for hydrazine oxidation and oxygen reduction. J Environ Chem Eng 10:107458

    Article  Google Scholar 

  138. Zhou W, Chen M, Tian Q, Chen J, Xu X, Wong C-P (2022) Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater 44:57–65

    Article  Google Scholar 

  139. Pham HD, Fernando JFS, Horn M, MacLeod J, Motta N, Doherty WOS, Payne A, Nanjundan AK, Golberg D, Dubal D (2021) Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochim Acta 389:138717

    Article  Google Scholar 

  140. Mendoza R, Oliva J, Padmasree KP, Oliva AI, Mtz-Enriquez AI, Zakhidov A (2022) Highly efficient textile supercapacitors made with face masks waste and thermoelectric Ca3Co4O9-δ oxide. J. Energy Storage 46:103818

    Article  Google Scholar 

Download references

Acknowledgements

KMT acknowledges financial assistance from the Department of Biotechnology (DBT), India, through the Ramalingaswami Faculty Award (BT/RLF/Re-entry/45/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Dhiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, V.K., Tripathi, K.M., Shrivastava, M., Dhiman, N. (2023). Degradation of Textile Waste for Environmental Protection. In: Mishra, A.K. (eds) Nano-engineered Materials for Textile Waste Remediation. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-19-7978-1_10

Download citation

Publish with us

Policies and ethics

Navigation