Introduction to Textile Waste Remediation

  • Chapter
  • First Online:
Nano-engineered Materials for Textile Waste Remediation

Abstract

With a growing economy and population, the textile industry has seen significant growth in demand for clothes and other textile-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 04:22–26. https://doi.org/10.4236/ns.2012.41004

    Article  Google Scholar 

  2. https://www.europarl.europa.eu/news/en/headlines/society/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographic

  3. Guidelines for Preparing Economic Analyses (n.d.) National Center for Environmental Economics Office of Policy U.S. Environmental Protection Agency

    Google Scholar 

  4. Selvaranjan K, Navaratnam S, Rajeev P, Ravintherakumaran N (2021) Environmental challenges induced by extensive use of face masks during COVID-19: a review and potential solutions. Environ Chall 3:100039. https://doi.org/10.1016/j.envc.2021.100039

    Article  Google Scholar 

  5. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    Article  Google Scholar 

  6. Srebrenkoska V, Zhezhova S, Risteski S, Golomeova S, Methods for waste waters treatment in textile industry. Faculty of Technology, University “Goce Delcev”, Stip, R. Macedonia

    Google Scholar 

  7. Boikanyo D, Mishra SB, Nxumalo EN, Mhlanga SD, Mishra AK (2019) Report to the Water Research Commission WRC Report No. 2583/1/19

    Google Scholar 

  8. Kishor R, Purchase D, Saratale GD, Saratale RG, Ferreira LF, Bilal M, Chandra RC, Bharagava RN (2021) Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng, 105012. https://doi.org/10.1016/j.jece.2020.105012

  9. Srivastava A, Bandhu S (2022)Biotechnological advancements and challenges in textile effluents management for a sustainable bioeconomy: Indian case studies. Case Stud Chem Environ Eng 5:100186. ISSN 2666-0164. https://doi.org/10.1016/j.cscee.2022.100186

  10. Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd_Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132. https://doi.org/10.3389/fmicb.2018.01132

  11. Singh PK, Imam J, Shukla P (2014) In silico approach in bioremediation. Microb Biodegrad Bioremed, 421–432. https://doi.org/10.1016/B978-0-12-800021-2.00018-2

  12. Subramanian K, Chopra SS, Cakin E, Li X, Lin CS (2020) Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resour Conserv Recycl 161:104989. https://doi.org/10.1016/j.resconrec.2020.104989

    Article  Google Scholar 

  13. Tian F, Guo G, Zhang C, Yang F, Hu Z, Liu C, Wang SW (2019) Isolation, cloning and characterization of an azoreductase and the effect of salinity on its expression in a halophilic bacterium. Int J Biol Macromol 123:1062–1069. https://doi.org/10.1016/j.ijbiomac.2018.11.175

    Article  Google Scholar 

  14. Pavithra KG, Jaikumar V (2019) Removal of colorants from wastewater: a review on sources and treatment strategies. J Ind Eng Chem 75:1–9. https://doi.org/10.1016/j.jiec.2019.02.011

    Article  Google Scholar 

  15. Akay Ö, Gündüz S, Gündüz FF (2020) The factor affecting textile production amounts of leading countries in textile export dynamic panel data analysis. Nicel Bilimler Derg 2:1–13

    Google Scholar 

  16. Zhang M, Kong XX, Ramu SC (2015) The transformation of the clothing industry in China. Economic Research Institute for ASEAN and East Asia (ERIA) Discussion Paper Series. https://www.eria.org/ERIA-DP-2015-12

  17. BIR (Bureau of International Recycling). Textiles 2014. http://www.bir.org/industry/textiles

  18. Sun Y, Cheng S, Lin Z, Yang J, Li C, Gu R (2020) Combination of plasma oxidation process with microbial fuel cell for mineralizing methylene blue with high energy efficiency. J Hazard Mater 384:121307. https://doi.org/10.1016/j.jhazmat.2019.121307

    Article  Google Scholar 

  19. Pattnaik P, Dangayach GS, Bhardwaj AK (2018)A review on the sustainability of textile industries wastewater with and without treatment methodologies. Rev Environ Health 33(2):163–203. https://doi.org/10.1515/reveh-2018-0013

  20. Qadeer R (2007) Adsorption behavior of ruthenium ions on activated charcoal from nirtic acid medium. Colloids Surf A 293:217–223. https://doi.org/10.1016/j.colsurfa.2006.07.035

    Article  Google Scholar 

  21. Cengiz S, Tanrikulu F, Aksu S (2012) An alternative source of adsorbent for the removal of dyes from textile waters: Posidonia oceanica (L.) Chem Eng J 189–90:32–40. https://doi.org/10.1016/j.cej.2012.02.015

  22. Merzouk B, Yakoubi M, Zongo I, Leclerc JP, Paternotte G, Pontvianne S et al (2011) Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination 275:181–186. https://doi.org/10.1016/j.desal.2011.02.055

    Article  Google Scholar 

  23. Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Alaba PA (2017) A review of electrocoagulation technology for the treatment of textile wastewater. Rev Chem Eng 33:263–292. https://doi.org/10.1515/revce-2016-0019

    Article  Google Scholar 

  24. Chen X, Chen G, Yue PL (2000) Separation of pollutants from restaurant wastewater by electrocoagulation. Sep Purif Technol 19:65–76. https://doi.org/10.1016/S13835866(99)00072-6

    Article  Google Scholar 

  25. Naje AS, Chelliapan S, Zakaria Z, Abbas SA (2015) Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. Int J Electrochem Sci 10:5924–5941

    Google Scholar 

  26. Golder AK, Samantha AN, Ray S (2007) Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolar configurations. J Hazard Mater 141:653–661. https://doi.org/10.1016/j.jhazmat.2006.07.025

    Article  Google Scholar 

  27. Heidman I, Calmano W (2008) Removal of Cr (VI) from model wastewaters by electrocoagulation with Fe electrode. Sep Purif Technol 61:15–21. https://doi.org/10.1016/j.seppur.2007.09.011

    Article  Google Scholar 

  28. Merzouk B, Madani K, Sekki A (2008) Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 228:245–254. https://doi.org/10.1016/j.desal.2007.10.013

    Article  Google Scholar 

  29. Merzouk B, Gourich B, Sekki A, Madani K, Chibane M (2009) Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique: a case study. J Hazard Mater 164:215–222. https://doi.org/10.1016/j.jhazmat.2008.07.144

    Article  Google Scholar 

  30. Meunier N, Drogui P, Montané C, Hausler R, Mercier G, Blais JF (2006) Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J Hazard Mater 137:581–590. https://doi.org/10.1016/j.jhazmat.2006.02.050

    Article  Google Scholar 

  31. Heidmann I, Calmano W (2008) Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation. J Hazard Mater 152:934–941. https://doi.org/10.1016/j.jhazmat.2007.07.068

    Article  Google Scholar 

  32. Canizares P, Martınez F, Jimenez C, Saez C, Rodrigo MA (2008) Coagulation and electrocoagulation of oil-in-water emulsions. J Hazard Mater 151:44–51. https://doi.org/10.1016/j.jhazmat.2007.05.043

    Article  Google Scholar 

  33. Khemis M, Tanguy G, Leclerc JP, Valentin G, Lapicque F (2005) Electrocoagulation for the treatment of oil suspensions: relation between the electrode generations and the waste content. Process Saf Environ Prot 83:50–57. https://doi.org/10.1205/psep.03381

    Article  Google Scholar 

  34. Kobya M, Can TO, Bayramoglu M (2003) Treatment of textile wastewaters by electrocoagulation using iron and aluminium electrodes. J Hazard Mater B 100:163–178. https://doi.org/10.1016/S0304-3894(03)00102-X

    Article  Google Scholar 

  35. Alinsafi A, Khemis M, Pons MN, Leclerc JP, Yaacoubi A, Benhammou A et al (2005) Electrocoagulation of reactive textile dyes and textile wastewaters. Chem Eng Process 44:461–470. https://doi.org/10.1016/j.cep.2004.06.010

    Article  Google Scholar 

  36. Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M (2009) Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chem Eng J 149:207–214. https://doi.org/10.1016/j.cej.2008.10.018

    Article  Google Scholar 

  37. Zongo I, Maïga A, Wéthé J, Valentin G, Paternotte G, Leclerc JP et al (2009) Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance. J Hazard Mater 169:70–76. https://doi.org/10.1016/j.jhazmat.2009.03.072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aishwarya Tiwari or Shivani B. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, A., Mishra, S.B., Mishra, A.K. (2023). Introduction to Textile Waste Remediation. In: Mishra, A.K. (eds) Nano-engineered Materials for Textile Waste Remediation. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-19-7978-1_1

Download citation

Publish with us

Policies and ethics

Navigation