Interactions Between Semiconducting Minerals and Microbes

  • Chapter
  • First Online:
Introduction to Environmental Mineralogy
  • 334 Accesses

Abstract

A synergistic reaction pathway has been identified between semiconducting minerals and bacteria. Such reactions sustain electron and energy flow from light to non-phototrophic bacteria via semiconducting minerals, which act as a catalytic shuttle. Understanding this pathway may shed light on a unique ecosystem that potentially carries out phototrophic metabolism without the involvement of phototrophic organisms. Four key natural elements of this system are sunlight, semiconducting minerals, non-phototrophic bacteria, and water. This pathway also suggests a “self-purification” mechanism that may exist in nature, whereby both oxidative and reductive degradation of contaminants can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed A, Rushworth JV, Hirst NA et al (2014) Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 27(3):631–646

    Article  Google Scholar 

  • Akhavan O (2009) Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336(1):117–124

    Article  Google Scholar 

  • Arnold RG, DiChristina TJ, Hoffmann MR (1988) Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol Bioeng 32(9):1081–1096

    Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152

    Article  Google Scholar 

  • Barkeloo JE, Hassett DJ, Irvin RT (2010) Microbial fuel cell: US 2010/0297737 A1

    Google Scholar 

  • Bems B, Jentoft FC, Schlögl R (1999) Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids. Appl Catal B 20(2):155–163

    Article  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805–809

    Article  Google Scholar 

  • Bodelón G, Montes-García V, López-Puente V et al (2016) Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater 15(11):1203–1211

    Article  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548–1555

    Article  Google Scholar 

  • Bosire EM, Blank LM, Rosenbaum MA (2016) Strain-and substrate-dependent redox mediator and electricity production by Pseudomonas aeruginosa. Appl Environ Microbiol 82(16):5026–5038

    Article  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232

    Article  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40(1):364–369

    Article  Google Scholar 

  • Chibisov A (1967) Impulse photolysis study of oxidative-reductive reactions photosensitized by pigments. Biofizika 12(1):53–62

    Google Scholar 

  • Cho Y, Donohue T, Tejedor I et al (2008) Development of a solar-powered microbial fuel cell. J Appl Microbiol 104(3):640–650

    Article  Google Scholar 

  • Connolly J (2012) Photochemical conversion and storage of solar energy. Elsevier

    Google Scholar 

  • Cournet A, Délia ML, Bergel A et al (2010) Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochem Commun 12(4):505–508

    Article  Google Scholar 

  • Dalrymple OK, Stefanakos E, Trotz MA et al (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B 98(1–2):27–38

    Article  Google Scholar 

  • Ding H, Li Y, Lu A et al (2010) Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode. Bioresour Technol 101(10):3500–3505

    Article  Google Scholar 

  • Ding H, Li Y, Lu A et al (2014) Promotion of anodic electron transfer in a microbial fuel cell combined with a silicon solar cell. J Power Sources 253:177–180

    Article  Google Scholar 

  • Ding J, Zhang Y, Quan X et al (2015) Anaerobic biodecolorization of ao7 by a newly isolated Fe(III)-reducing bacterium Sphingomonas strain DJ. J Chem Technol Biotechnol 90(1):158–165

    Article  Google Scholar 

  • Dong H, Yu B (2007) Geomicrobiological processes in extreme environments: a review. Episodes J Int Geosci 30(3):202–216

    Article  Google Scholar 

  • Dong H, Rech JA, Jiang H et al (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al‐Jafr Basin (Jordan) Deserts. J Geophys Res Biogeosci 112(G2)

    Google Scholar 

  • Dorn RI, Krinsley DH, Liu T et al (1992) Manganese-rich rock varnish does occur in Antarctica. Chem Geol 99(4):289–298

    Article  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482

    Article  Google Scholar 

  • Edwards MR (1996) Metabolite channeling in the origin of life. J Theor Biol 179(4):313–322

    Article  Google Scholar 

  • Erable B, Vandecandelaere I, Faimali M et al (2010) Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78(1):51–56

    Article  Google Scholar 

  • Fabrega J, Zhang R, Renshaw JC et al (2011) Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85(6):961–966

    Article  Google Scholar 

  • Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348–354

    Article  Google Scholar 

  • Feng Q, Song YC, Bae BU (2016) Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour Technol 220:500–508

    Article  Google Scholar 

  • Fredrickson JK, Zachara JM (2008) Electron transfer at the microbe–mineral interface: a grand challenge in biogeochemistry. Geobiology 6(3):245–253

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215(4536):1045–1053

    Article  Google Scholar 

  • Gamble TN, Betlach MR, Tiedje JM (1977) Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33(4):926–939

    Article  Google Scholar 

  • Geesey GG, Borch T, Reardon CL (2008) Resolving biogeochemical phenomena at high spatial resolution through electron microscopy. Geobiology 6(3):263–269

    Article  Google Scholar 

  • Gil GC, Chang IS, Kim BH et al (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18(4):327–334

    Article  Google Scholar 

  • Goldsmith Y, Enzel Y, Stein M (2012) Systematic Mn fluctuations in laminated rock varnish developed on coeval early Holocene flint artifacts along a climatic transect, Negev desert, Israel. Quat Res 78(3):474–485

    Article  Google Scholar 

  • Gorby YA, Yanina S, McLean JS et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103(30):11358–11363

    Article  Google Scholar 

  • Gupta S, Yadav A, Verma N (2017) Simultaneous Cr (VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode. Chem Eng J 307:729–738

    Article  Google Scholar 

  • Häder DP (1981) Electrical and proton gradients in the sensory transduction of photophobic responses in the blue-green alga, Phormidium Uncinatum. Arch Microbiol 130(1):83–86

    Article  Google Scholar 

  • Hayase K, Tsubota H (1983) Sedimentary humic acid and fulvic acid as surface active substances. Geochim Cosmochim Acta 47(5):947–952

    Article  Google Scholar 

  • He J, Zhang L, ** S et al (2008) Bacterial communities inside and surrounding soil iron-manganese nodules. Geomicrobiol J 25(1):14–24

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  Google Scholar 

  • Hsu YK, Chen YC, Lin YG et al (2012) Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. J Mater Chem 22(6):2733–2739

    Article  Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5(7):555–565

    Article  Google Scholar 

  • Ingledew WJ (1982) Thiobacillus ferrooxidans the bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683(2):89–117

    Article  Google Scholar 

  • Jaki B, Orjala J, Heilmann J et al (2000) Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63(3):339–343

    Article  Google Scholar 

  • Jeuken LJ (2017) Biophotoelectrochemistry: from bioelectrochemistry to biophotovoltaics. Springer

    Google Scholar 

  • Joo HS, Hirai M, Shoda M (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis, No. 4. J Biosci Bioeng 100(2):184–191

    Google Scholar 

  • Kim HJ, Park HS, Hyun MS et al (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella Putrefaciens. Enzyme Microb Technol 30(2):145–152

    Article  Google Scholar 

  • Kim S, Moon D-B, Lee C-H et al (2009) Comparison of the effects of NADH-and NADPH-perturbation stresses on the growth of Escherichia coli. Curr Microbiol 58(2):159–163

    Article  Google Scholar 

  • Klüpfel L, Piepenbrock A, Kappler A et al (2014) Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci 7(3):195–200

    Article  Google Scholar 

  • Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? Chem Electro Chem 3(9):1282–1295

    Google Scholar 

  • Kusvuran E, Gulnaz O, Irmak S et al (2004) Comparison of several advanced oxidation processes for the decolorization of reactive red 120 azo dye in aqueous solution. J Hazard Mater 109(1–3):85–93

    Article  Google Scholar 

  • Lee CG, Hwang JY, Oh M et al (2008) Overpotential analysis with various anode gas compositions in a molten carbonate fuel cell. J Power Sources 179(2):467–473

    Article  Google Scholar 

  • Li Y, Lu A, Ding H et al (2009a) Cr (VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11(7):1496–1499

    Article  Google Scholar 

  • Li Y, Lu A, ** S et al (2009b) Photo-reductive decolorization of an azo dye by natural sphalerite: case study of a new type of visible light-sensitized photocatalyst. J Hazard Mater 170(1):479–486

    Article  Google Scholar 

  • Li Y, Lu A, Wang C et al (2008) Characterization of natural sphalerite as a novel visible light-driven photocatalyst. Sol Energy Mater Sol Cells 92(8):953–959

    Article  Google Scholar 

  • Li Y, Lu A, Wang X et al (2013) Semiconducting mineral photocatalytic regeneration of Fe2+ promotes carbon dioxide acquisition by Acidithiobacillus ferrooxidans. Acta Geol Sin-Engl 87(3):761–766

    Article  Google Scholar 

  • Linke L, Lijuan Z, Li SFY (2017) Evaluation of the performance of zero-electrolyte-discharge microbial fuel cell based on the type of substrate. RSC Adv 7(7):4070–4077

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  Google Scholar 

  • Liu T, Broecker WS (2000) How fast does rock varnish grow? Geology 28(2):183–186

    Article  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046

    Article  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39(14):5488–5493

    Article  Google Scholar 

  • Liu J, Liu X, Ding H et al (2021a) Enhanced mechanism of extracellular electron transfer between semiconducting minerals anatase and Pseudomonas aeruginosa PAO1 in euphotic zone. Bioelectrochemistry 141:107849

    Article  Google Scholar 

  • Liu J, Sun Y, Lu A et al (2021b) Extracellular electron transfer of electrochemically active bacteria community promoted by semiconducting minerals with photo-response in marine euphotic zone. Geomicrobiol J 38(4):329–339

    Article  Google Scholar 

  • Liu Y, Feng C, Sheng Y et al (2018) Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate-and Fe(II)-contaminated groundwater. Ecotoxicol Environ Saf 166:437–445

    Article  Google Scholar 

  • Liu X, Wang S, Xu A et al (2019) Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnol 103(3):1535–1544

    Article  Google Scholar 

  • Liu Y, Sun Y, Ding H et al (2020) Photoelectron sha** marine microbial compositional and metabolic variation in the photic zone around estuary and offshore area of Yellow Sea, China. Geomicrobiol J 37(8):716–725

    Article  Google Scholar 

  • Lizama HM, Suzuki I (1989) Rate equations and kinetic parameters of the reactions involved in pyrite oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 55(11):2918–2923

    Article  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  Google Scholar 

  • Louro RO, Díaz-Moreno I (2016) Redox proteins in supercomplexes and signalosomes. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508

    Article  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49(2):219–286

    Article  Google Scholar 

  • Lower SK, Hochella MF Jr, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292(5520):1360–1363

    Article  Google Scholar 

  • Lu A, Li Y (2012) Light fuel cell (LFC): a novel device for interpretation of microorganisms-involved mineral photochemical process. Geomicrobiol J 29(3):236–243

    Article  Google Scholar 

  • Lu A, Li Y, Lv M et al (2007) Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light. Sol Energy Mater Sol Cells 91(19):1849–1855

    Article  Google Scholar 

  • Lu A, Li Y, ** S et al (2010) Microbial fuel cell equipped with a photocatalytic rutile-coated cathode. Energy Fuels 24(2):1184–1190

    Article  Google Scholar 

  • Lu A, Li Y, ** S (2012a) Interactions between semiconducting minerals and bacteria under light. Elements 8(2):125–130

    Article  Google Scholar 

  • Lu A, Li Y, ** S et al (2012b) Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nat Commun 3(1):1–8

    Article  Google Scholar 

  • Lu A, Li Y, Ding H et al (2019) Photoelectric conversion on Earth’s surface via widespread Fe-and Mn-mineral coatings. Proc Natl Acad Sci USA 116(20):9741–9746

    Article  Google Scholar 

  • Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  Google Scholar 

  • Ma J, Ni H, Su D et al (2016) Bioelectricity generation from pig farm wastewater in microbial fuel cell using carbon brush as electrode. Int J Hydrogen Energy 41(36):16191–16195

    Article  Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  Google Scholar 

  • Matsumoto N, Nakasono S, Ohmura N et al (1999) Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III). Biotechnol Bioeng 64(6):716–721

    Article  Google Scholar 

  • More P, Deshmukh L (2003) Photoelectrochemical investigations of n-CdSe1−xTex thin film electrodes. Mater Chem Phys 80(3):586–590

    Article  Google Scholar 

  • Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994

    Article  Google Scholar 

  • Moser DP, Nealson KH (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62(6):2100–2105

    Article  Google Scholar 

  • Mu Y, Rabaey K, Rozendal RA et al (2009) Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol 43(13):5137–5143

    Article  Google Scholar 

  • Mulkidjanian AY (2009) On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol Direct 4(1):1–39

    Google Scholar 

  • Nakasono S, Matsumoto N, Saiki H (1997) Electrochemical cultivation of Thiobacillus ferrooxidans by potential control. Bioelectrochem Bioenerg 43(1):61–66

    Article  Google Scholar 

  • Nasr C, Vinodgopal K, Hotchandani S et al (1997) Photocatalytic reduction of azo dyes naphthol blue black and disperse blue 79. Res Chem Intermed 23(3):219–231

    Article  Google Scholar 

  • Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13(9):405–410

    Article  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97

    Article  Google Scholar 

  • Ng DH, Kumar A, Cao B (2016) Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biotechnol 100(16):6935–6946

    Article  Google Scholar 

  • Nielsen LP, Risgaard-Petersen N, Fossing H et al (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463(7284):1071–1074

    Article  Google Scholar 

  • Nimje VR, Chen CY, Chen CC et al (2009) Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources 190(2):258–263

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96(7):3455–3462

    Article  Google Scholar 

  • Oh S, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39(19):4673–4682

    Article  Google Scholar 

  • Oh S, Min B, Logan BE (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol 38(18):4900–4904

    Article  Google Scholar 

  • Ohko Y, Hashimoto K, Fujishima A (1997) Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A 101(43):8057–8062

    Article  Google Scholar 

  • Parchert KJ, Spilde MN, Porras-Alfaro A et al (2012) Fungal communities associated with rock varnish in Black Canyon, New Mexico: casual inhabitants or essential partners? Geomicrobiol J 29(8):752–766

    Article  Google Scholar 

  • Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355

    Article  Google Scholar 

  • Peng RH, **ong AS, Xue Y et al (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32(6):927–955

    Article  Google Scholar 

  • Peral J, Mills A (1993) Factors affecting the kinetics of methyl orange reduction photosensitized by colloidal CdS. J Photochem Photobiol, A 73(1):47–52

    Article  Google Scholar 

  • Perry RS, Adams JB (1978) Desert varnish: evidence for cyclic deposition of manganese. Nature 276(5687):489–491

    Article  Google Scholar 

  • Pisciotta JM, Zaybak Z, Call DF et al (2012) Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 78(15):5212–5219

    Article  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96(7):3447–3454

    Article  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  Google Scholar 

  • Raghavulu SV, Mohan SV, Goud RK et al (2009) Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11(2):371–375

    Article  Google Scholar 

  • Ramasamy RP (2016) Photosynthetic electrochemical cells: US 2016/0380321 A1

    Google Scholar 

  • Reber JF, Meier K (1984) Photochemical production of hydrogen with zinc sulfide suspensions. J Phys Chem 88(24):5903–5913

    Article  Google Scholar 

  • Reda T, Plugge CM, Abram NJ et al (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105(31):10654–10658

    Article  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  Google Scholar 

  • Ren G, Sun Y, Sun M et al (2017) Visible light enhanced extracellular electron transfer between a hematite photoanode and Pseudomonas aeruginosa. Minerals 7(12):230

    Article  Google Scholar 

  • Ren G, Sun Y, Ding Y et al (2018a) Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite. Bioelectrochemistry 123:233–240

    Article  Google Scholar 

  • Ren G, Sun Y, Lu A et al (2018b) Boosting electricity generation and Cr (VI) reduction based on a novel silicon solar cell coupled double-anode (photoanode/bioanode) microbial fuel cell. J Power Sources 408:46–50

    Article  Google Scholar 

  • Ren G, Yan Y, Sun M et al (2018c) Considerable bacterial community structure coupling with extracellular electron transfer at Karst area stone in Yunnan. China. Geomicrobiol J 35(5):424–431

    Article  Google Scholar 

  • Ren G, Yan Y, Nie Y et al (2019) Natural extracellular electron transfer between semiconducting minerals and electroactive bacterial communities occurred on the rock varnish. Front Microbiol 10:293

    Article  Google Scholar 

  • Rezaei F, **ng D, Wagner R et al (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  Google Scholar 

  • Rinaldi A, Mecheri B, Garavaglia V et al (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1(4):417–429

    Article  Google Scholar 

  • Ringelberg DB, Foley KL, Reynolds CM (2011) Electrogenic capacity and community composition of anodic biofilms in soil-based bioelectrochemical systems. Appl Microbiol Biotechnol 90(5):1805–1815

    Article  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD et al (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180(2):683–694

    Article  Google Scholar 

  • Rosenbaum M, Schröder U, Scholz F (2005) In-situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol 39(16):6328–6333

    Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092–1101

    Article  Google Scholar 

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29(7):358–363

    Article  Google Scholar 

  • Sacco NJ, Bonetto MC, Corton E (2017) Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PLoS One 12(2):e0169955

    Google Scholar 

  • Sakai N, Ebina Y, Takada K et al (2005) Photocurrent generation from semiconducting manganese oxide nanosheets in response to visible light. J Phys Chem B 109(19):9651–9655

    Article  Google Scholar 

  • Sasaki D, Sasaki K, Tsuge Y et al (2016) Comparative metabolic state of microflora on the surface of the anode electrode in a microbial fuel cell operated at different pH conditions. AMB Express 6(1):1–9

    Article  Google Scholar 

  • Sayyed R, Gangurde N, Patel P et al (2010) Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian J Biotechnol 9:302–307

    Google Scholar 

  • Schoonen MA, Xu Y, Strongin DR (1998) An introduction to geocatalysis. J Geochem Explor 62(1–3):201–215

    Article  Google Scholar 

  • Sene JJ, Zeltner WA, Anderson MA (2003) Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials. J Phys Chem B 107(7):1597–1603

    Article  Google Scholar 

  • Serpone N, Salinaro A (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: suggested protocol. Pure Appl Chem 71(2):303–320

    Google Scholar 

  • Shah AA, Hasan F, Hameed A et al (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265

    Article  Google Scholar 

  • Sheng Y, Bibby K, Grettenberger C et al (2016) Geochemical and temporal influences on the enrichment of acidophilic iron-oxidizing bacterial communities. Appl Environ Microbiol 82(12):3611–3621

    Article  Google Scholar 

  • Sherman DM (2005) Electronic structures of iron (III) and manganese (IV)(hydr) oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim Cosmochim Acta 69(13):3249–3255

    Article  Google Scholar 

  • Shevela D, Nöring B, Eckert HJ et al (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Phys 8(29):3460–3466

    Article  Google Scholar 

  • Shi L, Rosso KM, Zachara JM et al (2012) Mtr extracellular electron-transfer pathways in Fe(III)-reducing or F (II)-oxidizing bacteria: a genomic perspective. Biochem Soc Trans 40(6):1261–1267

    Article  Google Scholar 

  • Shi L, Dong H, Reguera G et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662

    Article  Google Scholar 

  • Shively JM, Van Keulen G, Meijer WG (1998) Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52(1):191–230

    Article  Google Scholar 

  • Shumilin I, Nikandrov V, Popov V et al (1992) Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus without exogenous mediators. FEBS Lett 306(2–3):125–128

    Article  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Plant Sci 19(4):267–290

    Article  Google Scholar 

  • Solina BA (2014) Electroactive cultures and apparatuses therefor: US 2016/0036083 A1

    Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270(5235):450–455

    Article  Google Scholar 

  • Stolz JF, Basu P, Santini JM et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60(1):107–130

    Article  Google Scholar 

  • Su W, Zhang L, Li D et al (2012) Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol Bioeng 109(11):2904–2910

    Article  Google Scholar 

  • Sukkasem C, Xu S, Park S et al (2008) Effect of nitrate on the performance of single chamber air cathode microbial fuel cells. Water Res 42(19):4743–4750

    Article  Google Scholar 

  • Ter Heijne A, Schaetzle O, Gimenez S et al (2011) Identifying charge and mass transfer resistances of an oxygen reducing biocathode. Energy Environ Sci 4(12):5035–5043

    Article  Google Scholar 

  • Tributsch H, Fiechter S, Jokisch D et al (2003) Photoelectrochemical power, chemical energy and catalytic activity for organic evolution on natural pyrite interfaces. Origins Life Evol Biosphere 33(2):129–162

    Article  Google Scholar 

  • Vaughan DJ (2006) Sulfide mineralogy and geochemistry: introduction and overview. Rev Mineral Geochem 61(1):1–5

    Article  Google Scholar 

  • Wächtershäuser G (2000) Life as we don’t know it. Science 289(5483):1307–1308

    Article  Google Scholar 

  • Wang G, Huang L, Zhang Y (2008) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30(11):1959–1966

    Article  Google Scholar 

  • Watson D, MacDermot J, Wilson R et al (1986) Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur J Biochem 159(2):309–313

    Article  Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pum** iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764

    Article  Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF Jr (2007) Aquatic environmental nanoparticles. J Environ Monit 9(12):1306–1316

    Article  Google Scholar 

  • Winogradsky S (1949) Microbiologie du sol: problemes et methodes. Masson Et Cie Editeurs, Paris

    Google Scholar 

  • Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556

    Article  Google Scholar 

  • Yanagida S, Yoshiya M, Shiragami T et al (1990) Semiconductor photocatalysis. I. Quantitative photoreduction of aliphatic ketones to alcohols using defect-free zinc sulfide quantum crystallites. J Phys Chem 94(7):3104–3111

    Google Scholar 

  • Yunker S, Radovich J (1986) Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron. Biotechnol Bioeng 28(12):1867–1875

    Google Scholar 

  • Zang L, Liu CY, Ren XM (1995) Photochemistry of semiconductor particles 3. Effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols. J Photochem Photobiol, A 85(3):239–245

    Google Scholar 

  • Zhang B, Feng C, Ni J et al (2012) Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. J Power Sources 204:34–39

    Article  Google Scholar 

  • Zhang J, Yang G, Zhou S et al (2013) Fontibacter ferrireducens sp. nov., an Fe(III)-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(Pt_3):925–929

    Google Scholar 

  • Zita J, Krýsa J, Mills A (2009) Correlation of oxidative and reductive dye bleaching on TiO2 photocatalyst films. J Photochem Photobiol, A 203(2–3):119–124

    Article  Google Scholar 

  • Zuo Y, **ng D, Regan JM et al (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhuai Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, A., Li, Y., Wang, C., Ding, H. (2023). Interactions Between Semiconducting Minerals and Microbes. In: Introduction to Environmental Mineralogy. Springer, Singapore. https://doi.org/10.1007/978-981-19-7792-3_8

Download citation

Publish with us

Policies and ethics

Navigation