Photocatalytic Reduction Effects of Sphalerite and Sulfur

  • Chapter
  • First Online:
Introduction to Environmental Mineralogy
  • 288 Accesses

Abstract

Semiconducting minerals are widely distributed in nature. They have been playing critical roles in near-surface geological processes, including the formation of prebiotic organic molecules (Schoonen et al., Ambio 33:539–551, 2004), and controlling and affecting (bio)geochemical redox processes in nature (Rosso, Rev Mineral Geochem 42:199–272, 2001; Lu et al., Nat Commun 3:768–775, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass AK, Hasen AK, Misho RH (1985) Investigation of optically allowed transitions of α-sulfur thin films. J Appl Phys 58(4):1640–1642

    Article  Google Scholar 

  • Allen GC, Paul M (1995) Chemical characterization of transition metal spinel-type oxides by infrared spectroscopy. Appl Spectrosc 49(4):451–458

    Article  Google Scholar 

  • Boldish SI, White WB (1998) Optical band gaps of selected ternary sulfide minerals. Am Miner 83(7–8):865–871

    Article  Google Scholar 

  • Boumaza S, Boudjemaa A, Bouguelia A et al (2010) Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/ SrTiO3. Appl Energy 87(7):2230–2236

    Article  Google Scholar 

  • Calhoun RL, Winkelmann K, Mills G (2001) Chain photoreduction of CCl3F induced by TiO2 particles. J Phys Chem B 105(40):9739–9746

    Article  Google Scholar 

  • Canuto VM, Levine JS, Augustsson TR et al (1982) UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature 296(5860):816–820

    Article  Google Scholar 

  • Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14

    Article  Google Scholar 

  • Chatterjee S (2016) A symbiotic view of the origin of life at hydrothermal impact crater-lakes. Phys Chem Chem Phys 18(30):20033–20046

    Article  Google Scholar 

  • Chen TT, Dutrizac JE (2004) Mineralogical changes occurring during the fluid-bed roasting of zinc sulfide concentrates. Jom 56(12):46–51

    Article  Google Scholar 

  • Chen X, Shen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  Google Scholar 

  • Chen Y, Ng TW, LuA, et al (2013) Comparative study of visible-light- driven photocatalytic inactivation of two different wastewater bacteria by natural sphalerite. Chem Eng J 234:43–48

    Article  Google Scholar 

  • Chibisov AK (1967) Impulse photolysis study of oxidative- reductive reactions photosensitized by pigments. Biofizika 12(1):53–62

    Google Scholar 

  • Choi WY, Hoffmann MR (1995) Photoreductive mechanism of CCl4 degradation on TiO2 particles and effects of electron-donors. Environ Sci Technol 29(6):1646–1654

    Article  Google Scholar 

  • Christenson BW, White S, Britten K et al (2017) Hydrological evolution and chemical structure of a hyper-acidic spring-lake system on Whakaari/White Island, NZ. J Volcanol Geoth Res 346:180–221

    Article  Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355(6356):125–132

    Article  Google Scholar 

  • Cockell CS (2000) The ultraviolet history of the terrestrial planets—implications for biological evolution. Planet Space Sci 48(2–3):203–214

    Article  Google Scholar 

  • Cole DA, Simmons GW, Herman RG et al (1987) Transformations of iron minerals during coal oxidation. Fuel 66(9):1240–1248

    Article  Google Scholar 

  • Cook BE, Spear WE (1969) The optical properties of orthorhombic sulphur crystals in the vacuum ultraviolet. J Phys Chem Solids 30(5):1125–1134

    Article  Google Scholar 

  • Cuscó R, Alarcón-Lladó E, Ibanez J et al (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75(16):165202

    Article  Google Scholar 

  • Damer B, Deamer D (2020) The hot spring hypothesis for an origin of life. Astrobiology 20(4):429–452

    Article  Google Scholar 

  • Delmelle P, Bernard A, Kusakabe M et al (2000) Geochemistry of the magmatic–hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geoth Res 97(1–4):31–53

    Article  Google Scholar 

  • Des Marais DJ, Walter MR (2019) Terrestrial hot spring systems: introduction. Astrobiology 19(12):1419–1432

    Article  Google Scholar 

  • DeWitt HL, Hasenkopf CA, Trainer MG et al (2010) The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth. Astrobiology 10(8):773–781

    Article  Google Scholar 

  • Djokic T, Van Kranendonk MJ, Campbell KA et al (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8(1):1–9

    Google Scholar 

  • Figueroa SJA, Stewart SJ (2009) First XANES evidence of a disorder–order transition in a spinel ferrite compound: nanocrystalline ZnFe2O4. J Synchrotron Radiat 16(1):63–68

    Article  Google Scholar 

  • Firet NJ, Smith WA (2017) Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal 7(1):606–612

    Article  Google Scholar 

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. Orig Life Evol Biosph 28(3):321–347

    Article  Google Scholar 

  • Geng BY, Liu XW, Du QB et al (2006) Structure and optical properties of periodically twinned ZnS nanowires. Appl Phys Lett 88(16):163104

    Article  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319(6055):618–618

    Article  Google Scholar 

  • Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on the Earth, as precursors to organic life. New Biol 12:97–105

    Google Scholar 

  • Graydon JW, Kirk DW (1988) A microscopic study of the transformation of sphalerite particles during the roasting of zinc concentrate. Metall Trans B 19(1):141–146

    Article  Google Scholar 

  • Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52(29):7372–7408

    Article  Google Scholar 

  • Halevy I, Bachan A (2017) The geologic history of seawater pH. Science 355(6329):1069–1071

    Article  Google Scholar 

  • Halouani FE, Deschanvres A (1982) Interfaces semi-conducteur- electrolyte: correlations entre le potentiel de bande plate et les echelles d’electronegativite. Mater Res Bull 17(8):1045–1052

    Article  Google Scholar 

  • Hazen RM (2001) Life’s rocky start. Sci Am 284(4):76–85

    Article  Google Scholar 

  • Hazen RM, Papineau D, Bleeker W et al (2008) Mineral evolution. Am Miner 93(11–12):1693–1720

    Article  Google Scholar 

  • Hu JS, Ren LL, Guo YG et al (2005) Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem Int Ed 44(8):1269–1273

    Article  Google Scholar 

  • Hu R, Seager S, Bains, W (2013) Photochemistry in terrestrial exoplanet atmospheres. II. H2S and SO2 photochemistry in anoxic atmospheres. Astrophys J 769(1):6

    Google Scholar 

  • Kaasalainen H, Stefánsson A (2011) Sulfur speciation in natural hydrothermal waters. Iceland. Geochimica Et Cosmochimica Acta 75(10):2777–2791

    Article  Google Scholar 

  • Kanemoto M, Shiragami T, Pac C et al (1992) Effective photoreduction of carbon dioxide catalyzed by zinc sulfide quantum crystallites with low density of surface defects. J Phys Chem 96(8):3521–3526

    Article  Google Scholar 

  • Kasting JF, Zahnle KJ, Pinto JP et al (1989) Sulfur, ultraviolet radiation, and the early evolution of life. Orig Life Evol Biosph 19(2):95–108

    Article  Google Scholar 

  • Kudo A, Sekizawa M (1999) Photocatalytic H2 evolution under visible light irradiation on Zn1-x CuxS solid solution. Catal Lett 58(4):241–243

    Article  Google Scholar 

  • Kudo A, Tsuji I, Kato H (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 17:1958–1959

    Article  Google Scholar 

  • Kumar M, Francisco JS (2017) Elemental sulfur aerosol-forming mechanism. Proc Natl Acad Sci USA 114(5):864–869

    Article  Google Scholar 

  • Lal M, Schoneich C, Monig J, Asmus KD (1988) Rate constants for the reactions of halogenated organic radicals. Int J Radiat Biol 54(5):773–785

    Article  Google Scholar 

  • Lei Z, Ma G, Liu M et al (2006) Sulfur-substituted and zinc-doped In(OH)3: a new class of catalyst for photocatalytic H2 production from water under visible light illumination. J Catal 237(2):322–329

    Article  Google Scholar 

  • Li Y, Lu AH, Wang CQ (2006) Photocatalytic reduction of CrVI by natural sphalerite suspensions under visible light irradiation. Acta Geologica Sinica-English Edition 80(2):267–272

    Google Scholar 

  • Li Y, Ding C, Liu Y et al (2017) Visible light photocatalysis of natural semiconducting minerals. Advances in Photocatalytic Disinfection. Springer, Berlin, Heidelberg 2017:17–39

    Google Scholar 

  • Li Y, Lu AH, ** S et al (2009a) Photo-reductive decolorization of an azo dye by natural sphalerite: case study of a new type of visible light-sensitized photocatalyst. J Hazard Mater 170(1):479–486

    Article  Google Scholar 

  • Li Y, Lu AH, Wang CQ (2009b) Semiconducting mineralogical characteristics of natural sphalerite gestating visible-light photocatalysis. Acta Geologica Sinica-English Edition 83(3):633–639

    Article  Google Scholar 

  • Li Y, Lu AH, Wang CQ et al (2008) Characterization of natural sphalerite as a novel visible-light-driven photocatalyst. Sol Energy Mater Sol Cells 92(8):953–959

    Article  Google Scholar 

  • Li Y, Li Y, Yin Y et al (2018) Facile synthesis of highly efficient ZnO/ZnFe2O4 photocatalyst using earth-abundant sphalerite and its visible light photocatalytic activity. Appl Catal B 226:324–336

    Article  Google Scholar 

  • Li Y, Li Y, Liu Y et al (2020) Photoreduction of inorganic carbon (+IV) by elemental sulfur: implications for prebiotic synthesis in terrestrial hot springs. Sci Adv 6(47): eabc3687

    Google Scholar 

  • Liu G, Niu P, Yin L et al (2012a) α-Sulfur crystals as a visible- light-active photocatalyst. J Am Chem Soc 134(22):9070–9073

    Article  Google Scholar 

  • Liu L, Zhao H, Andino JM et al (2012b) Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2(8):1817–1828

    Article  Google Scholar 

  • Liu Y, Li Y, Li Y et al (2017) Experimental study of photocatalytic reduction of carbon dioxide on natural sphalerite. J Nan**g Univ (Natural Science) 53(5):823–830

    Google Scholar 

  • Lu AH, Li Y, ** S et al (2012) Growth of nonphototrophic microorganisms on solar energy through mineral photocatalysis. Nat Commun 3:768–775

    Article  Google Scholar 

  • Lu AH, Wang X, Li Y et al (2014) Mineral photoelectrons and their implications for the origin and early evolution of life on Earth. Sci China Earth Sci 57(5):897–902

    Article  Google Scholar 

  • Maletin M, Moshopoulou EG, Kontos AG et al (2007) Synthesis and structural characterization of In-doped ZnFe2O4 nanoparticles. J Eur Ceram Soc 27(13–15):4391–4394

    Article  Google Scholar 

  • Martin W, Baross J, Kelley D et al (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6(11):805–814

    Article  Google Scholar 

  • McCollom TM, Seewald JS (2003) Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. formic acid and formate. Geochimica et Cosmochimica Acta 67(19):3625–3644

    Google Scholar 

  • Michalski JR, Onstott TC, Mojzsis SJ et al (2018) The Martian subsurface as a potential window into the origin of life. Nat Geosci 11(1):21–26

    Article  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528–529

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquat Geochem 4(3):301–319

    Article  Google Scholar 

  • Mulkidjanian AY, Bychkov AY, Dibrova DV et al (2012) Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 109(14):E821–E830

    Article  Google Scholar 

  • Nakashima S, Fujita K, Tanaka K et al (2007) First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution. Phys Rev B 75(17):174443

    Article  Google Scholar 

  • Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25(9):1522–1529

    Article  Google Scholar 

  • Orgel LE (1994) The origin of life on the earth. Sci Am 271(4):76–83

    Article  Google Scholar 

  • Preiner M, Igarashi K, Muchowska KB et al (2020) A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat Ecol Evol 4(4):534–542

    Article  Google Scholar 

  • Ranjan S, Todd ZR, Sutherland JD et al (2018) Sulfidic anion concentrations on early earth for surficial origins-of-life chemistry. Astrobiology 18(8):1023–1040

    Article  Google Scholar 

  • Redmond G, O’Keeffe A, Burgess C et al (1993) Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films. J Phys Chem 97(42):11081–11086

    Article  Google Scholar 

  • Romcevic N, Kostic R, Romcevic M et al (2008) Raman scattering from ZnO (Fe) nanoparticles. Acta Phys Pol, A 114(5):1323–1328

    Article  Google Scholar 

  • Rosso KM (2001) Structure and reactivity of semiconducting mineral surfaces: convergence of molecular modeling and experiment. Rev Mineral Geochem 42(1):199–272

    Article  Google Scholar 

  • Ruff SW, Farmer JD (2016) Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat Commun 7(1):1–10

    Article  Google Scholar 

  • Sasselov DD, Grotzinger JP, Sutherland JD (2020) The origin of life as a planetary phenomenon. Sci Adv 6(6):eaax3419

    Google Scholar 

  • Schoonen M, Smirnov A (2016) Staging life in an early warm ‘seltzer’ ocean. Elements 12(6):395–400

    Article  Google Scholar 

  • Schoonen M, Smirnov A, Cohn C (2004) A perspective on the role of minerals in prebiotic synthesis. Ambio 33(8):539–551

    Article  Google Scholar 

  • Schoonen MA, Xu Y, Bebie J (1999) Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant. Orig Life Evol Biosph 29(1):5–32

    Article  Google Scholar 

  • Schwab GM, Philinis J (1947) Reactions of iron pyrite: its thermal decomposition, reduction by hydrogen and air oxidation. J Am Chem Soc 69(11):2588–2596

    Article  Google Scholar 

  • Sculfort JL, Gautron J (1984) The role of the anion electronegativity in semiconductor–electrolyte and semiconductor–metal junctions. J Chem Phys 80(8):3767–3773

    Article  Google Scholar 

  • Seely GR (1965) On the chlorophyllide-sensitized reduction of azobenzene and other compounds. J Phys Chem 69(8):2779–2782

    Article  Google Scholar 

  • Serrano J, Romero AH, Manjon FJ et al (2004) Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys Rev B 69(9):094306

    Article  Google Scholar 

  • Shuey RT (1975) Semiconducting ore minerals. Elsevier, Amsterdam

    Google Scholar 

  • Speight JG (2005) Lange’s handbook of chemistry. Mcgraw-hill, New York

    Google Scholar 

  • Squyres SW, Arvidson RE, Ruff S et al (2008) Detection of silica- rich deposits on Mars. Science 320(5879):1063–1067

    Article  Google Scholar 

  • Srikant V, Clarke DR (1998) On the optical band gap of zinc oxide. J Appl Phys 83(10):5447–5451

    Article  Google Scholar 

  • Stanbury DM (1989) Reduction potentials involving inorganic free radicals in aqueous solution. Adv Inorg Chem 33:69–138

    Article  Google Scholar 

  • Stetter KO (2006) History ofdiscoveryofthe first hyperthermophiles. Extremophiles 10(5):357–362

    Article  Google Scholar 

  • Steudel R (1996) Das gelbe Element und seine erstaunliche Vielseitigkeit. Chem Unserer Zeit 30(5):226–234

    Article  Google Scholar 

  • Steudel R (2003) Elemental sulfur and sulfur-rich compounds I. Springer, Berlin

    Book  Google Scholar 

  • Steudel R, Albertsen J, Zink K (1989) Photoinduced ESR signals in orthorhombic cyclo-octasulfur (α-S8) and in quenched liquid sulfur at low temperatures. Ber Bunsenges Phys Chem 93(4):502–509

    Article  Google Scholar 

  • Šutka A, Pärna R, Zamovskis M et al (2013) Effect of antisite defects on the magnetic properties of ZnFe2O4. Phys Status Solidi A 210(9):1892–1897

    Article  Google Scholar 

  • Takano B, Saitoh H, Takano E (1994) Geochemical implications of subaqueous molten sulfur at Yugama crater lake, Kusatsu-Shirane volcano Japan. Geochem J 28(3):199–216

    Article  Google Scholar 

  • Tsuji I, Kato H, Kudo A (2005) Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 117(23):3631–3634

    Article  Google Scholar 

  • Urey HC (1952) On the early chemical history of the earth and the origin of life. Proc Natl Acad Sci USA 38(4):351–363

    Article  Google Scholar 

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58(2):85–201

    Article  Google Scholar 

  • Wada Y, Yin H, Yanagida S (2002) Environmental remediation using catalysis driven under electromagnetic irradiation. Catal Surv Jpn 5(2):127–138

    Article  Google Scholar 

  • Wang Z, Schiferl D, Zhao Y et al (2003) High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J Phys Chem Solids 64(12):2517–2523

    Article  Google Scholar 

  • Winkelmann K, Calhoun RL, Mills G (2006) Chain photoreduction of CCl3F in TiO2 suspensions: enhancement induced by O2. J Phys Chem A 110(51):13827–13835

    Article  Google Scholar 

  • **a D, Ng TW, An T et al (2013) A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: natural magnetic sphalerite. Environ Sci Technol 47(19):11166–11173

    Article  Google Scholar 

  • Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Miner 85(3–4):543–556

    Article  Google Scholar 

  • Xu Y, Schoonen MAA, Nordstrom DK et al (1998) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. the origin of thiosulfate in hot spring waters. Geochimica et Cosmochimica Acta 62(23–24):3729–3743

    Google Scholar 

  • Xu Y, Schoonen MAA, Nordstrom DK et al (2000) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. II. formation and decomposition of thiosulfate and polythionate in Cinder Pool. J Volcanol Geotherm Res 97(1–4):407–423

    Google Scholar 

  • Yanagida S, Yoshiy M, Shiragami T et al (1990) Semiconductor photocatalysis. I. quantitative photoreduction of aliphatic ketones to alcohols using defect-free zinc sulfide quantum crystallites. J Phys Chem 94(7):3104–3111

    Google Scholar 

  • Yin H, Wada Y, Kitamura T et al (2001) Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environ Sci Technol 35(1):227–231

    Article  Google Scholar 

  • Zang L, Liu C, Ren X (1995) Photochemistry of semiconductor particles 3. effects of surface charge on reduction rate of methyl orange photosensitized by ZnS sols. J Photochem Photobiol A: Chem 85(3):239–245

    Google Scholar 

  • Zhang CL, Ye Q, Huang Z et al (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 74(20):6417–6642

    Article  Google Scholar 

  • Zhang XV, Ellery SP, Friend CM et al (2007) Photodriven reduction and oxidation reactions on colloidal semiconductor particles: implications for prebiotic synthesis. J Photochem Photobiol, A 185(2–3):301–311

    Article  Google Scholar 

  • Zhang XV, Martin ST, Friend CM et al (2004) Mineral-assisted pathways in prebiotic synthesis: Photoelectrochemical reduction of carbon (+IV) by manganese sulfide. J Am Chem Soc 126(36):11247–11253

    Article  Google Scholar 

  • Zhou J, Liu X, Zhu L et al (2020) High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem 6(1):221–233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhuai Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, A., Li, Y., Wang, C., Ding, H. (2023). Photocatalytic Reduction Effects of Sphalerite and Sulfur. In: Introduction to Environmental Mineralogy. Springer, Singapore. https://doi.org/10.1007/978-981-19-7792-3_6

Download citation

Publish with us

Policies and ethics

Navigation