Biomass Energy from Agriculture

Conversion Techniques and Use

  • Reference work entry
  • First Online:
Handbook of Energy Management in Agriculture

Abstract

Environmental alarms like climate change, acid rain, and air pollution from the use of fossil fuels and developments in biomass technology have rejuvenated the attention in biomass energy as a renewable and sustainable energy source. Worldwide, biomass energy contributes to 10–14% of total energy demand. In rural areas, 90% of energy is obtained by biomass, and in urban areas it is 40%. The share of biomass is more than one-third of primary energy requirements. After forest, agriculture sector provides the largest contribution for total biomass energy production. Totally, 140 billion metric tons of biomass is produced by agriculture every year. Improper management of such massive amount of agricultural biomass is becoming a growing problem as rotten agricultural biomass emits methane and leachate, and open burning by farmers to clear the fields release CO2 and other harmful particulates in local environment assisting for climate change, water and soil impurity, and local air pollution. This volume of biomass can be converted to a vast amount of energy, and raw materials for energy production can greatly displace fossil fuel, reduce emissions of greenhouse gases, and provide renewable energy to farmers in develo** countries like India, which still lack access to electricity. Using agricultural biomass as energy source will decrease the agricultural waste management cost and would make revenues from the sale of the mended energy. To manage agricultural biomass and to convert it into a beneficial resource, extensive efforts are being taken by many governments and other institutions, and there are stagnant gaps to be filled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdoli, M. A., Golzary, A., Hosseini, A., & Sadeghi, P. (2018). Biomass densification. In Wood pellet as a renewable source of energy (pp. 33–46). Springer.

    Google Scholar 

  • Arancon, R. A. D., Lin, C. S. K., Chan, K. M., Kwan, T. H., & Luque, R. (2017). Advances on waste valorization: New horizons for a more sustainable society. In Waste management and valorization (pp. 23–66). Apple Academic Press.

    Google Scholar 

  • Atabani, A. E., Silitonga, A. S., Ong, H. C., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., & Fayaz, H. (2013). Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews, 18, 211–245.

    CAS  Google Scholar 

  • Balachandra, P. (2012). Dynamics of rural energy access in India. An assessment. Energy, 36, 5556–5567. https://doi.org/10.1016/j.energy.2011.07.017

    Article  Google Scholar 

  • Balaman, S. Y. (2018). Decision-making for biomass-based production chains: The basic concepts and methodologies. Academic.

    Google Scholar 

  • Balan, V., Chiaramonti, D., & Kumar, S. (2013). Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels, Bioproducts and Biorefining, 7(6), 732–759.

    CAS  Google Scholar 

  • Balat, M., & Ayar, G. (2005). Biomass energy in the world, use of biomass and potential trends. Energy Sources, 27(10), 931–940.

    Google Scholar 

  • Carrasco, J. L., Gunukula, S., Boateng, A. A., Mullen, C. A., DeSisto, W. J., & Wheeler, M. C. (2017). Pyrolysis of forest residues: An approach to techno-economics for bio-fuel production. Fuel, 193, 477–484.

    CAS  Google Scholar 

  • Dahlquist, E. (Ed.). (2013). Technologies for converting biomass to useful energy: Combustion, gasification, pyrolysis, torrefaction and fermentation. CRC Press.

    Google Scholar 

  • Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378.

    Google Scholar 

  • Dionisi, D., Anderson, J. A., Aulenta, F., McCue, A., & Paton, G. (2015). The potential of microbial processes for lignocellulosic biomass conversion to ethanol: A review. Journal of Chemical Technology & Biotechnology, 90(3), 366–383.

    CAS  Google Scholar 

  • Directorate of Economics and Statistics. (2012). Land use statistics at a glance – State wise. Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India, New Delhi. https://eands.dacnet.nic.in. Accessed 10 July 2021

    Google Scholar 

  • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski, J. (1994). Carbon pools and flux of global ecosystems. Science, 263, 185–190. https://doi.org/10.1126/science.263.5144.185

    Article  CAS  PubMed  Google Scholar 

  • FAO. (1981). FAO yearbook of forest products 1979. Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • FAO. (1986). FAO yearbook of forest products 1984. Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • FAO. (1996). Yearbook of forest products 1994. Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • FAO. (1997). Review of wood energy data in RWEDP member countries (Field Document No. 47). Bangkok.

    Google Scholar 

  • FAO. (2005). Grasslands of the world. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378–1392.

    Google Scholar 

  • Hall, D. O., Rosillo-Calle, F., & Woods, J. (1994). Biomass utilization in households and industry, energy use and development. Chemosphere, 29, 1099–1119.

    Google Scholar 

  • Houghton, R. A. (2008). Biomass; Encyclopedia of ecology (pp. 448–453., ISBN:9780080454054). Academic. https://doi.org/10.1016/B978-008045405-4.00462-6

    Book  Google Scholar 

  • IEA. (2021). India energy outlook. IEA. https://www.iea.org/reports/india-energy-outlook-2021

    Google Scholar 

  • Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017.

    CAS  Google Scholar 

  • Karkania, V., Fanara, E., & Zabaniotou, A. (2012). Review of sustainable biomass pellets production – A study for agricultural residues pellets’ market in Greece. Renewable and Sustainable Energy Reviews, 16(3), 1426–1436.

    Google Scholar 

  • Kashyap, R. K., Chugh, P., & Nandakumar, T. (2016). Opportunities & challenges in capturing landfill gas from an active and un-scientifically managed land fill site – A case study. Procedia Environmental Sciences, 35, 348–367.

    CAS  Google Scholar 

  • Kaygusuz, K. (2011). Energy services and energy poverty for sustainable rural development. Renewable and Sustainable Energy Reviews, 15(2), 936–947.

    Google Scholar 

  • Keoleian, G. A., & Volk, T. A. (2005). Renewable energy from willow biomass crops: life cycle energy. Environmental and Economic Performance, Critical Reviews in Plant Sciences, 24, 385–406. https://doi.org/10.1080/07352680500316334

    Article  Google Scholar 

  • Li, K., Liu, R., & Sun, C. (2016). A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews, 54, 857–865.

    CAS  Google Scholar 

  • M.S. Swaminathan Research Foundation (MSSRF). (2011). Bioenergy resource status in India; report prepared for Development for International Development (DFID) by the Policy Innovation Systems for Clean Energy Security (PISCES) (pp. 2–14). MSSRF.

    Google Scholar 

  • Manju, S., & Sagar, N. (2017). Progressing towards the development of sustainable energy: A critical review on the current status, applications, developmental barriers and prospects of solar photovoltaic systems in India. Renewable and Sustainable Energy Reviews, 70, 298–313.

    Google Scholar 

  • Muneer, T., Asif, M., & Munawwar, S. (2005). Sustainable production of solar electricity with particular reference to the Indian economy. Renewable and Sustainable Energy Reviews, 9(5), 444–473.

    Google Scholar 

  • Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.

    CAS  Google Scholar 

  • National Electricity Plan (NEP). (2014). Volume 1, Generation. Available online: http://www.cea.nic.in/reports/powersystems/nep2012/generation_12.pdf

  • NCAER. (1992). Evaluation survey of household biogas plants set up during seventh five-year plan. National Council for Applied Economic Research.

    Google Scholar 

  • Nizamuddin, S., Baloch, H. A., Griffin, G. J., Mubarak, N. M., Bhutto, A. W., Abro, R., et al. (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews, 73, 1289–1299.

    CAS  Google Scholar 

  • Noonari, A. A., Mahar, R. B., Sahito, A. R., & Brohi, K. M. (2019). Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renewable Energy, 133, 1046–1054.

    CAS  Google Scholar 

  • Okuma, O., Hayashi, J., Fukunaga, Y., & Adachi, Y. (2015). Development of a carbonization process by burning only volatile matter from wet-biomass dried by fermentation (II) carbonization of dried sewage-sludge only by burning its volatile. Journal of the Japan Institute of Energy, 94, 1422–1427. https://doi.org/10.3775/jie.94.1422

    Article  CAS  Google Scholar 

  • Pandey, B., Prajapati, Y. K., & Sheth, P. N. (2019). Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state of the art review. International Journal of Hydrogen Energy, 44(47), 25384–25415.

    CAS  Google Scholar 

  • Patel, D. M., Kodgire, P., & Dwivedi, A. H. (2020). Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production, 245, 118838.

    CAS  Google Scholar 

  • Pervin, M. (2017). Farmers’ perception on eucalyptus tree plantation as cropland agroforestry: A case study of Bogura District. Doctoral dissertation, Department of Agroforestry & Environmental Science.

    Google Scholar 

  • Rahman, F. A., Aziz, M. M. A., Saidur, R., Bakar, W. A. W. A., Hainin, M. R., Putrajaya, R., & Hassan, N. A. (2017). Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renewable and Sustainable Energy Reviews, 71, 112–126.

    Google Scholar 

  • Rai, S. N., & Chakrabarti, S. K. (1996). Demand and supply of fuelwood, timber and fodder in India (Report). Forest Survey of India, Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Rasul, G. (2016). Characterization and assessment of the potential of local biomass as feedstock of synthetic fuels and chemicals.

    Google Scholar 

  • Ravindranath, N. H., & Hall, D. O. (1995). Biomass energy and environment – A develo** country perspective from India. Oxford University Press.

    Google Scholar 

  • Ravindranath, N. H., Somashekar, H. I., Nagarajaa, M. S., Sudha, P., Sangeetha, G., Bhattacharyab, S. C., & Abdul, S. P. (2005). Assessment of sustainable non-plantation biomass resources potential for energy in India. Bio Bioenergy, 29, 178–190. http://eprints.iisc.ac.in/id/eprint/383

    Google Scholar 

  • Rosillo-Calle, F., De Groot, P., Hemstock, S. L., & Woods, J. (Eds.). (2015). The biomass assessment handbook: Energy for a sustainable environment. Routledge.

    Google Scholar 

  • Satlewal, A., Agrawal, R., Bhagia, S., Das, P., & Ragauskas, A. J. (2018). Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels, Bioproducts and Biorefining, 12(1), 83–107.

    CAS  Google Scholar 

  • Saxena, R. C., Seal, D., Kumar, S., & Goyal, H. B. (2008). Thermo-chemical routes for hydrogen rich gas from biomass: A review. Renewable and Sustainable Energy Reviews, 12(7), 1909–1927.

    CAS  Google Scholar 

  • Sharma, V. K., Fortuna, F. A. B. I. O., Mincarini, M. A. R. C. E. L. L. O., Berillo, M., & Cornacchia, G. I. A. C. I. N. T. O. (2000). Disposal of waste tyres for energy recovery and safe environment. Applied Energy, 65(1–4), 381–394.

    CAS  Google Scholar 

  • Sharma, S., Meena, R., Sharma, A., & Goyal, P. (2014). Biomass conversion technologies for renewable energy and fuels: A review note. IOSR Journal of Mechanical and Civil Engineering, 11(2), 28–35.

    Google Scholar 

  • Shukla, A., & Kumar, S. Y. (2017). A comparative study of sugarcane bagasse gasification and direct combustion. International Journal of Applied Engineering Research, 12, 14739–14745.

    Google Scholar 

  • Singh, R., Krishna, B. B., Mishra, G., Kumar, J., & Bhaskar, T. (2016). Strategies for selection of thermo-chemical processes for the valorisation of biomass. Renewable Energy, 98, 226–237.

    CAS  Google Scholar 

  • Sinha, C. S., Ramana, P. V., & Joshi, V. (1994). Rural energy planning in India: Designing effective intervention strategies. Energy Policy, 22(5), 403.

    Google Scholar 

  • Sorathia, H. S., Rathod, P. P., & Sorathiya, A. S. (2012). Biogas generation and factors affecting the bio-gas generational review study. International Journal of Advanced Engineering and Technology, 3(72), e78.

    Google Scholar 

  • Speight, J. G. (2016). Production of syngas, synfuel, bio-oils, and biogas from coal, biomass, and opportunity fuels. In Fuel flexible energy generation (pp. 145–174). Woodhead Publishing.

    Google Scholar 

  • Statistics, W. G. B. (2019). World Bioenergy Association: Stockholm.

    Google Scholar 

  • Surendra, K. C., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for develo** countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846–859.

    Google Scholar 

  • TERI. (2009). Energy data directory and yearbook. Energy and Resource Institute.

    Google Scholar 

  • The Outlook for Energy. (2013). A view to 2040 (p. 49). Exxon Mobil Corporation.

    Google Scholar 

  • Thomas, G., Pidgeon, N., & Roberts, E. (2018). Ambivalence, naturalness and normality in public perceptions of carbon capture and storage in biomass, fossil energy, and industrial applications in the United Kingdom. Energy Research & Social Science, 46, 1–9.

    Google Scholar 

  • Thornton, P. K. (2012). Recalibrating food production in the develo** world: Global warming will change more than just the climate. CCAFS Policy Brief.

    Google Scholar 

  • Twidell, J., & Weir, A. (2006). Renewable energy resources (2nd ed.). Taylor & Francis.

    Google Scholar 

  • Wu, X., Yao, W., & Zhu, J. (2010). Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. In 2010 Pittsburgh, Pennsylvania, June 20–June 23, 2010 (p. 1). American Society of Agricultural and Biological Engineers.

    Google Scholar 

  • Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annual Review of Energy and the Environment, 24(1), 189–226.

    Google Scholar 

  • Young, R. A. (2007). Wood and wood products. In Kent and Riegel’s handbook of industrial chemistry and biotechnology (pp. 1234–1293). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, S., Lohan, S.K., Parihar, D.S. (2023). Biomass Energy from Agriculture. In: Rakshit, A., Biswas, A., Sarkar, D., Meena, V.S., Datta, R. (eds) Handbook of Energy Management in Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-19-7736-7_10-1

Download citation

Publish with us

Policies and ethics

Navigation