A New Diffusive Representation for Fractional Derivatives, Part I: Construction, Implementation and Numerical Examples

  • Conference paper
  • First Online:
Fractional Differential Equations (INDAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 50))

  • 367 Accesses

Abstract

Diffusive representations of fractional derivatives have proven to be useful tools in the construction of fast and memory efficient numerical methods for solving fractional differential equations. A common challenge in many of the known variants of this approach is that they require the numerical approximation of some integrals over an unbounded integral whose integrand decays rather slowly, which implies that their numerical handling is difficult and costly. We present a novel variant of such a diffusive representation. This form also requires the numerical approximation of an integral over an unbounded domain, but the integrand decays much faster. This property allows to use well established quadrature rules with much better convergence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baffet, D.: A Gauss-Jacobi kernel compression scheme for fractional differential equations. J. Sci. Comput. 79, 227–248 (2019). https://doi.org/10.1007/s10915-018-0848-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Birk, C., Song, C.: An improved non-classical method for the solution of fractional differential equations. Comput. Mech. 46, 721–734 (2010). https://doi.org/10.1007/s00466-010-0510-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vibrations 284 (2005), 1239–1245. https://doi.org/10.1016/j.jsv.2004.09.019

    Article  Google Scholar 

  4. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, San Diego (1984)

    MATH  Google Scholar 

  5. Diethelm, K.: An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives. Numer. Algorithms 47, 361–390 (2008). https://doi.org/10.1007/s11075-008-9193-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14574-2

  7. Diethelm, K.: Fast solution methods for fractional differential equations in the modeling of viscoelastic materials. In: Proc. 9th International Conference on Systems and Control (ICSC 2021), pp. 455–460. IEEE, Piscataway (2021). https://doi.org/10.1109/ICSC50472.2021.9666636

  8. Diethelm, K.: A new diffusive representation for fractional derivatives, part II: convergence analysis of the numerical scheme. Mathematics 10, 1245 (2022). https://doi.org/10.3390/math10081245

    Article  Google Scholar 

  9. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002). https://doi.org/10.1023/A:1016592219341

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36, 31–52 (2004). https://doi.org/10.1023/B:NUMA.0000027736.85078.be

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Freed, A.D.: An efficient algorithm for the evaluation of convolution integrals. Comput. Math. Appl. 51, 51–72 (2006). https://doi.org/10.1016/j.camwa.2005.07.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dynam. 107, 3245–3270 (2022). https://doi.org/10.1007/s11071-021-07158-9

    Article  Google Scholar 

  13. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 333–346 (2001). https://doi.org/10.1023/A:1016601312158

    Article  MathSciNet  MATH  Google Scholar 

  14. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6, 16 (2018). https://doi.org/10.3390/math6020016

    Article  MATH  Google Scholar 

  15. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6, 532–541 (1985). https://doi.org/10.1137/0906037

    Article  MathSciNet  MATH  Google Scholar 

  16. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of weakly singular Volterra integral equations. J. Comput. Appl. Math. 23, 87–98 (1988). https://doi.org/10.1016/0377-0427(88)90332-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd revised edition, corrected second printing. Springer, Berlin (2002). https://doi.org/10.1007/978-3-642-05221-7

  18. Hinze, M., Schmidt, A., Leine, R.I.: Numerical solution of fractional-order ordinary differential equations using the reformulated infinite state representation. Fract. Calc. Appl. Anal. 22, 1321–1350 (2019). https://doi.org/10.1515/fca-2019-0070

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J.-R.: A fast time step** method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–4714 (2010). https://doi.org/10.1137/080736533

    Article  MathSciNet  MATH  Google Scholar 

  20. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45, 463–469 (1985). https://doi.org/10.1090/S0025-5718-1985-0804935-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986). https://doi.org/10.1137/0517050

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubinsky, D.S.: A survey of weighted polynomial approximation with exponential weights. Surv. Approx. Theory 3, 1–105 (2007)

    MathSciNet  MATH  Google Scholar 

  23. McLean, W.: Exponential sum approximations for t β. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics, pp. 911–930. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72456-0_40

    Google Scholar 

  24. Montseny, G.: Diffusive representation of pseudo-differential time-operators. ESAIM Proc. 5, 159–175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmidt, A., Gaul, L.: On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems. Mech. Res. Commun. 33, 99–107 (2006). https://doi.org/10.1016/j.mechrescom.2005.02.018

    Article  MATH  Google Scholar 

  26. Singh, S.J., Chatterjee, A.: Galerkin projections and finite elements for fractional order derivatives. Nonlinear Dyn. 45, 183–206 (2006). https://doi.org/10.1007/s11071-005-9002-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Szegő, G.: Orthogonal Polynomials, 4th edn. Amer. Math. Soc., Providence (1975)

    Google Scholar 

  28. Trinks, C., Ruge, P.: Treatment of dynamic systems with fractional derivatives without evaluating memory-integrals. Comput. Mech. 29, 471–476 (2002). https://doi.org/10.1007/s00466-002-0356-5

    Article  MathSciNet  MATH  Google Scholar 

  29. Yuan, L., Agrawal, O.P.: A numerical scheme for dynamic systems containing fractional derivatives. J. Vibration Acoust. 124, 321–324 (2002). https://doi.org/10.1115/1.1448322

    Article  Google Scholar 

  30. Zhang, W., Capilnasiu, A., Sommer, G., Holzapfel, G.A., Nordsletten, D.: An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials. Comput. Methods Appl. Mech. Eng. 362, 112834 (2020). https://doi.org/10.1016/j.cma.2020.112834

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Diethelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diethelm, K. (2023). A New Diffusive Representation for Fractional Derivatives, Part I: Construction, Implementation and Numerical Examples. In: Cardone, A., Donatelli, M., Durastante, F., Garrappa, R., Mazza, M., Popolizio, M. (eds) Fractional Differential Equations. INDAM 2021. Springer INdAM Series, vol 50. Springer, Singapore. https://doi.org/10.1007/978-981-19-7716-9_1

Download citation

Publish with us

Policies and ethics

Navigation