Stochastic Structure-Preserving Numerical Methods

  • Chapter
  • First Online:
Symplectic Integration of Stochastic Hamiltonian Systems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2314))

  • 535 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Alfonsi, Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Statist. Probab. Lett. 83(2), 602–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Anmarkrud, A. Kværnø, Order conditions for stochastic Runge–Kutta methods preserving quadratic invariants of Stratonovich SDEs. J. Comput. Appl. Math. 316, 40–46 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Anton, Weak backward error analysis for stochastic Hamiltonian systems. BIT 59(3), 613–646 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Anton, Explicit pseudo-symplectic methods based on generating functions for stochastic Hamiltonian systems. J. Comput. Appl. Math. 373, 112433, 16 (2020)

    Google Scholar 

  5. C. Anton, Y.S. Wong, J. Deng, Symplectic schemes for stochastic Hamiltonian systems preserving Hamiltonian functions. Int. J. Numer. Anal. Model. 11(3), 427–451 (2014)

    MathSciNet  MATH  Google Scholar 

  6. C. Anton, J. Deng, Y.S. Wong, Weak symplectic schemes for stochastic Hamiltonian equations. Electron. Trans. Numer. Anal. 43, 1–20 (2014/2015)

    MathSciNet  MATH  Google Scholar 

  7. L. Arnold, Stochastic Differential Equations: Theory and Applications. (Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974)

    Google Scholar 

  8. S. Blanes, A. Iserles, Explicit adaptive symplectic integrators for solving Hamiltonian systems. Celestial Mech. Dynam. Astronom. 114(3), 297–317 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bou-Rabee, H. Owhadi, Stochastic variational integrators. IMA J. Numer. Anal. 29(2), 421–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Brugnano, F. Iavernaro, Line Integral Methods for Conservative Problems. Monographs and Research Notes in Mathematics (CRC Press, Boca Raton, 2016)

    Google Scholar 

  11. K. Burrage, P.M. Burrage, High strong order explicit Runge–Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22(1–3), 81–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Burrage, P.M. Burrage, Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Burrage, P.M. Burrage, Low rank Runge–Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise. J. Comput. Appl. Math. 236(16), 3920–3930 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Chen, Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs, vol. 157 (American Mathematical Society, Providence, 2009)

    Google Scholar 

  15. C. Chen, D. Cohen, J. Hong, Conservative methods for stochastic differential equations with a conserved quantity. Int. J. Numer. Anal. Model. 13(3), 435–456 (2016)

    MathSciNet  MATH  Google Scholar 

  16. C. Chen, J. Hong, D. **, Modified averaged vector field methods preserving multiple invariants for conservative stochastic differential equations. BIT 60(4), 917–957 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Chen, J. Hong, D. **, L. Sun, Asymptotically-preserving large deviations principles by stochastic symplectic methods for a linear stochastic oscillator. SIAM J. Numer. Anal. 59(1), 32–59 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Chen, S. Gan, X. Wang, First order strong convergence of an explicit scheme for the stochastic SIS epidemic model. J. Comput. Appl. Math. 392, 113482 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Chen, J. Hong, C. Huang, Stochastic modified equations for symplectic methods applied to rough Hamiltonian systems based on the Wong–Zakai approximation. ar**v:1907.02825v1.

    Google Scholar 

  20. D. Cohen, On the numerical discretisation of stochastic oscillators. Math. Comput. Simulation 82(8), 1478–1495 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Cohen, G. Dujardin, Energy-preserving integrators for stochastic Poisson systems. Commun. Math. Sci. 12(8), 1523–1539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38 (Springer-Verlag, Berlin, 2010)

    Google Scholar 

  23. J. Deng, C. Anton, Y.S. Wong, High-order symplectic schemes for stochastic Hamiltonian systems. Commun. Comput. Phys. 16(1), 169–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Deya, A. Neuenkirch, S. Tindel, A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 48(2), 518–550 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Duruisseaux, J. Schmitt, M. Leok, Adaptive Hamiltonian variational integrators and applications to symplectic accelerated optimization. SIAM J. Sci. Comput. 43(4), A2949–A2980 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Feng, M. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems (Zhejiang Science and Technology Publishing House/Springer, Hangzhou/Heidelberg, 2010)

    Book  MATH  Google Scholar 

  27. G. Ferré, H. Touchette, Adaptive sampling of large deviations. J. Stat. Phys. 172(6), 1525–1544 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Friz, S. Riedel, Convergence rates for the full Gaussian rough paths. Ann. Inst. Henri Poincaré Probab. Stat. 50(1), 154–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Gyöngy, A note on Euler’s approximations. Potential Anal. 8(3), 205–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31, (Springer-Verlag, Berlin, 2002)

    Google Scholar 

  31. D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. D.J. Higham, X. Mao, A.M. Stuart, Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.D. Holm, T.M. Tyranowski, Stochastic discrete Hamiltonian variational integrators. BIT 58(4), 1009–1048 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hong, R. Scherer, L. Wang, Predictor-corrector methods for a linear stochastic oscillator with additive noise. Math. Comput. Model. 46(5-6), 738–764 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Hong, S. Zhai, J. Zhang, Discrete gradient approach to stochastic differential equations with a conserved quantity. SIAM J. Numer. Anal. 49(5), 2017–2038 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Hong, D. Xu, P. Wang, Preservation of quadratic invariants of stochastic differential equations via Runge–Kutta methods. Appl. Numer. Math. 87, 38–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Hong, C. Huang, X. Wang, Symplectic Runge–Kutta methods for Hamiltonian systems driven by Gaussian rough paths. Appl. Numer. Math. 129, 120–136 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Hong, X. Wang, Invariant Measures for Stochastic Nonlinear Schrödinger Equations: Numerical Approximations and Symplectic Structures. Lecture Notes in Mathematics, vol. 2251 (Springer, Singapore, 2019)

    Google Scholar 

  39. J. Hong, J. Ruan, L. Sun, L. Wang, Structure-preserving numerical methods for stochastic Poisson systems. Commun. Comput. Phys. 29(3), 802–830 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Hong, L. Ji, X. Wang, J. Zhang, Positivity-preserving symplectic methods for the stochastic Lotka–Volterra predator-prey model. BIT 62(2), 493–520 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Hu, Semi-implicit Euler–Maruyama scheme for stiff stochastic equations, in Stochastic Analysis and Related Topics, V (Silivri, 1994). Progress in Probability, vol. 38 (Birkhäuser Boston, Boston, 1996)

    Google Scholar 

  42. M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Hutzenthaler, A. Jentzen, X. Wang, Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations. Math. Comput. 87(311), 1353–1413 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. R. Khasminskii, Stochastic Stability of Differential Equations. Stochastic Modelling and Applied Probability, vol. 66 (Springer, Heidelberg, 2012)

    Google Scholar 

  45. P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations. Applications of Mathematics (New York), vol. 23 (Springer-Verlag, Berlin, 1992)

    Google Scholar 

  46. Y. Komori, Weak second-order stochastic Runge–Kutta methods for non-commutative stochastic differential equations. J. Comput. Appl. Math. 206(1), 158–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Komori, T. Mitsui, H. Sugiura, Rooted tree analysis of the order conditions of ROW-type scheme for stochastic differential equations. BIT 37(1), 43–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations. Lecture Notes in Mathematics, vol. 2093 (Springer, Cham, 2014)

    Google Scholar 

  49. M. Leok, J. Zhang, Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31(4), 1497–1532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Q. Ma, D. Ding, X. Ding, Symplectic conditions and stochastic generating functions of stochastic Runge–Kutta methods for stochastic Hamiltonian systems with multiplicative noise. Appl. Math. Comput. 219(2), 635–643 (2012)

    MathSciNet  MATH  Google Scholar 

  51. S.J.A. Malham, A. Wiese, Stochastic Lie group integrators. SIAM J. Sci. Comput. 30(2), 597–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. X. Mao, Stochastic Differential Equations and Their Applications. Horwood Publishing Series in Mathematics & Applications (Horwood Publishing Limited, Chichester, 1997)

    Google Scholar 

  53. X. Mao, F. Wei, T. Wiriyakraikul, Positivity preserving truncated Euler–Maruyama method for stochastic Lotka–Volterra competition model. J. Comput. Appl. Math. 394, 113566 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. J.E. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. R.I. McLachlan, G.R.W. Quispel, Explicit geometric integration of polynomial vector fields. BIT 44(3), 515–538 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. G.N. Milstein, Weak approximation of solutions of systems of stochastic differential equations. Teor. Veroyatnost. i Primenen. 30(4), 706–721 (1985)

    MathSciNet  Google Scholar 

  57. G.N. Milstein, Numerical Integration of Stochastic Differential Equations. Mathematics and its Applications, vol. 313 (Kluwer Academic Publishers Group, Dordrecht, 1995)

    Google Scholar 

  58. G.N. Milstein, M.V. Tretyakov, Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43(3), 1139–1154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. G.N. Milstein, M.V. Tretyakov, Monte Carlo methods for backward equations in nonlinear filtering. Adv. Appl. Probab. 41(1), 63–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. G.N. Milstein, M.V. Tretyakov, Stochastic Numerics for Mathematical Physics. Scientific Computation, 2nd edn. (Springer, Cham, 2021)

    Google Scholar 

  61. G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Mean-square symplectic methods for Hamiltonian systems with multiplicative noise (2001)

    Google Scholar 

  62. G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40(4), 1583–1604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Symplectic integration of Hamiltonian systems with additive noise. SIAM J. Numer. Anal. 39(6), 2066–2088 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  64. T. Misawa, Conserved quantities and symmetry for stochastic dynamical systems. Phys. Lett. A 195(3–4), 185–189 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  65. T. Misawa, Energy conservative stochastic difference scheme for stochastic Hamilton dynamical systems. Jpn. J. Indust. Appl. Math. 17(1), 119–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Misawa, Symplectic integrators to stochastic Hamiltonian dynamical systems derived from composition methods. Math. Probl. Eng. 2010, Article ID 384937, 1–12 (2010)

    Google Scholar 

  67. N.J. Newton, Asymptotically efficient Runge–Kutta methods for a class of Itô and Stratonovich equations. SIAM J. Appl. Math. 51(2), 542–567 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  68. X. Niu, J. Cui, J. Hong, Z. Liu, Explicit pseudo-symplectic methods for stochastic Hamiltonian systems. BIT 58(1), 163–178 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Ober-Blöbaum, Galerkin variational integrators and modified symplectic Runge–Kutta methods. IMA J. Numer. Anal. 37(1), 375–406 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  70. S. Ober-Blöbaum, N. Saake, Construction and analysis of higher order Galerkin variational integrators. Adv. Comput. Math. 41(6), 955–986 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  71. E.S. Palamarchuk, An analytic study of the Ornstein-Uhlenbeck process with time-varying coefficients in the modeling of anomalous diffusions. Autom. Remote Control 79(2), 289–299 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  72. C.M. Rohwer, F. Angeletti, H. Touchette, Convergence of large-deviation estimators. Phys. Rev. E 92, 052104 (2015)

    Article  Google Scholar 

  73. A. Rössler, Runge–Kutta methods for Stratonovich stochastic differential equation systems with commutative noise. J. Comput. Appl. Math. 164/165, 613–627 (2004)

    Google Scholar 

  74. A. Rössler, Second order Runge–Kutta methods for Stratonovich stochastic differential equations. BIT 47(3), 657–680 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  75. C. Scalone, Positivity preserving stochastic θ-methods for selected SDEs. Appl. Numer. Math. 172, 351–358 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  76. M.J. Senosiain, A. Tocino, A review on numerical schemes for solving a linear stochastic oscillator. BIT 55(2), 515–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. A.H. Strømmen Melbø, D.J. Higham, Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 51(1), 89–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. J.B. Sturgeon, B.B. Laird, Symplectic algorithm for constant-pressure molecular dynamics using a Nosé–Poincaré thermostat. J. Chem. Phys. 112(8), 3474–3482 (2000)

    Article  Google Scholar 

  79. L. Sun, L. Wang, Stochastic symplectic methods based on the Padé approximations for linear stochastic Hamiltonian systems. J. Comput. Appl. Math. 311, 439–456 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  80. D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Related Fields 8(2), 163–198 (2002)

    MathSciNet  MATH  Google Scholar 

  81. M. Tao, Explicit high-order symplectic integrators for charged particles in general electromagnetic fields. J. Comput. Phys. 327, 245–251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Thieullen, J.C. Zambrini, Probability and quantum symmetries. I: the theorem of Noether in Schrödinger’s Euclidean quantum mechanics. Ann. Inst. H. Poincaré Phys. Théor. 67(3), 297–338 (1997)

    MATH  Google Scholar 

  83. A. Tocino, On preserving long-time features of a linear stochastic oscillator. BIT 47(1), 189–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  84. A. Tocino, J. Vigo-Aguiar, Weak second order conditions for stochastic Runge–Kutta methods. SIAM J. Sci. Comput. 24(2), 507–523 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  85. M.V. Tretyakov, Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  86. L. Wang, Variational integrators and generating functions for stochastic Hamiltonian systems. Ph.D. Thesis, Karlsruhe Institute of Technology, 2007

    Google Scholar 

  87. L. Wang, J. Hong, Generating functions for stochastic symplectic methods. Discrete Contin. Dyn. Syst. 34(3), 1211–1228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  88. L. Wang, J. Hong, L. Sun, Modified equations for weakly convergent stochastic symplectic schemes via their generating functions. BIT 56(3), 1131–1162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  89. P. Wang, J. Hong, D. Xu, Construction of symplectic Runge–Kutta methods for stochastic Hamiltonian systems. Commun. Comput. Phys. 21(1), 237–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  90. H. Yang, J. Huang, First order strong convergence of positivity preserving logarithmic Euler–Maruyama method for the stochastic SIS epidemic model. Appl. Math. Lett. 121, 107451 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  91. Y. Yi, Y. Hu, J. Zhao, Positivity preserving logarithmic Euler–Maruyama type scheme for stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul. 101, 105895 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  92. Z. Zhang, G.E. Karniadakis, Numerical Methods for Stochastic Partial Differential Equations with White Noise. Applied Mathematical Sciences, vol. 196 (Springer, Cham, 2017)

    Google Scholar 

  93. W. Zhou, L. Zhang, J. Hong, S. Song, Projection methods for stochastic differential equations with conserved quantities. BIT 56(4), 1497–1518 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, J., Sun, L. (2022). Stochastic Structure-Preserving Numerical Methods. In: Symplectic Integration of Stochastic Hamiltonian Systems. Lecture Notes in Mathematics, vol 2314. Springer, Singapore. https://doi.org/10.1007/978-981-19-7670-4_2

Download citation

Publish with us

Policies and ethics

Navigation