Impacts of Urbanization and Climate Change on Habitat Destruction and Emergence of Zoonotic Species

  • Chapter
  • First Online:
Climate Change and Urban Environment Sustainability

Abstract

Urbanization and climate change are the two prime factors that affect the species habitat and serve as a significant threat to biodiversity. The loss and fragmentation of biodiversity due to urbanization and climate change have a direct bearing on the spread and emergence of zoonotic diseases. Changing climatic conditions such as precipitation, temperature and humidity are the key factors that affect zoonosis. The decline in land cover for agricultural activities and to cater to the needs of the growing population especially in crowded urban and suburban areas promotes conditions suitable for disease emergence. In this chapter, the emergence and transformation of zoonotic species due to urbanization are highlighted, and perception was developed for the identification of such incidences based on urbanization and climate. Understanding the relationship between urbanization, climate change, habitat destruction and changes in environment is important for environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullahi H, Sinniah GK, Siong HC (2020) Urban growth air pollution, CO, NO2 and SO2 emission and COVID-19 in Kano Metropolis Nigeria. Science Press, Riga

    Google Scholar 

  • Abushahba MF, Ahmed SO, Ibrahim AA, Mosa HA (2018) Prevalence of zoonotic species of Campylobacter in broiler chicken and humans in Assiut governorate, Egypt. Approaches Poult Dairy Vet Sci 3(4):260–268

    Google Scholar 

  • Adetola OO, Adebisi MA (2019) Impacts of deforestation on the spread of Mastomys natalensis in Nigeria. World Scientific News 130:286–296

    Google Scholar 

  • Aguirre AA (2017) Changing patterns of emerging zoonotic diseases in wildlife, domestic animals, and humans linked to biodiversity loss and globalization. ILAR J 58(3):315–318

    Article  CAS  PubMed  Google Scholar 

  • Aguirrea AA, Taborb GM (2008) Global factors driving emerging infectious diseases. Virus 1:7

    Google Scholar 

  • Ahmed T, Asghar MW, Mushtaq MH (2019) A short report on epidemiological investigation of dog bite cases in association with temperature rise as a part of climate change. Advancements in Life Sciences 6(3):106–109

    CAS  Google Scholar 

  • Akar S, Adesola YO, Burga J, Oluwafemi B, Akinrogbe J, Ihekweazu C (2020) Descriptive epidemiology of monkeypox in Nigeria, September 2017–June 2019. Int J Infect Dis 101:219–220

    Article  Google Scholar 

  • Albery GF, Becker DJ (2021) Fast-lived hosts and zoonotic risk. Trends Parasitol 37(2):117–129

    Article  CAS  PubMed  Google Scholar 

  • Albery, G. F., Carlson, C. J., Cohen, L. E., Eskew, E. A., Gibb, R., Ryan, S. J., . & Becker, D. J. (2021). Urban-adapted mammal species have more known pathogens. Nat Ecol Evol 6(6):794-801

    Article  Google Scholar 

  • Alirol E, Getaz L, Stoll B, Chappuis F, Loutan L (2011) Urbanisation and infectious diseases in a globalised world. Lancet Infect Dis 11(2):131–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Altizer S, Bartel R, Han BA (2011) Animal migration and infectious disease risk. Science 331(6015):296–302

    Article  CAS  PubMed  Google Scholar 

  • Ancillotto L, Allegrini C, Serangeli MT, Jones G, Russo D (2015) Sociality across species: spatial proximity of newborn bats promotes heterospecific social bonding. Behav Ecol 26(1):293–299

    Article  Google Scholar 

  • Ancillotto L, Santini L, Ranc N, Maiorano L, Russo D (2016) Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. Sci Nat 103(3–4):15

    Article  CAS  Google Scholar 

  • Arias-Monsalve C, Builes-Jaramillo A (2019) Impact of El Niño-southern oscillation on human leptospirosis in Colombia at different spatial scales. J Infect Dev Ctries 13(12):1108–1116

    Article  PubMed  Google Scholar 

  • Asad H, Carpenter DO (2018) Effects of climate change on the spread of zika virus: a public health threat. Rev Environ Health 33(1):31–42

    Article  PubMed  Google Scholar 

  • Azami-Conesa I, Sansano-Maestre J, Martínez-Díaz RA, Gómez-Muñoz MT (2021) Invasive species as hosts of zoonotic infections: the case of American mink (Neovison vison) and Leishmania infantum. Microorganisms 9(7):1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat SA, Bashir O, Bilal M, Ishaq A, Dar MUD, Kumar R et al (2021) Impact of COVID-related lockdowns on environmental and climate change scenarios. Environ Res 195:110839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasdell KR, Morand S, Perera D, Firth C (2019) Association of rodent-borne Leptospira spp. with urban environments in Malaysian Borneo. PLoS Negl Trop Dis 13(2):e0007141

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordes F, Morand S, Pilosof S, Claude J, Krasnov BR, Cosson JF et al (2015) Habitat fragmentation alters the properties of a host–parasite network: rodents and their helminths in South-East Asia. J Anim Ecol 84(5):1253–1263

    Article  PubMed  Google Scholar 

  • Bouzid M, Colón-González FJ, Lung T, Lake IR, Hunter PR (2014) Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever. BMC Public Health 14(1):1–12

    Article  Google Scholar 

  • Brooks DR, Hoberg EP (2006) Systematics and emerging infectious diseases: from management to solution. J Parasitol 92(2):426–429

    Article  PubMed  Google Scholar 

  • Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A et al (2014) Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68(2):514–525

    Article  CAS  PubMed  Google Scholar 

  • Brownstein JS, Rosen H, Purdy D, Miller JR, Merlino M, Mostashari F, Fish D (2002) Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonot Dis 2(3):157–164

    Article  Google Scholar 

  • Cable J, Barber I, Boag B, Ellison AR, Morgan ER, Murray K et al (2017) Global change, parasite transmission and disease control: lessons from ecology. Philos Trans R Soc B Biol Sci 372(1719):20160088

    Article  Google Scholar 

  • Chaisiri K, Chaeychomsri W, Siruntawineti J, Bordes F, Herbreteau V, Morand S (2010) Human-dominated habitats and helminth parasitism in southeast Asian murids. Parasitol Res 107(4):931–937

    Article  PubMed  Google Scholar 

  • Chaisiri K, Siribat P, Ribas A, Morand S (2015) Potentially zoonotic helminthiases of murid rodents from the Indo-Chinese peninsula: impact of habitat and the risk of human infection. Vector Borne Zoonot Dis 15(1):73–85

    Article  Google Scholar 

  • Charrahy Z, Yaghoobi-Ershadi MR, Shirzadi MR, Akhavan AA, Rassi Y, Hosseini SZ (2021) Climate change and its effect on the vulnerability to zoonotic cutaneous leishmaniasis in Iran. Transbound Emerg Dis 69(3):1506–1520

    Article  PubMed  Google Scholar 

  • Chauhan S (2020) Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed J 43(4):334–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheval S, Mihai Adamescu C, Georgiadis T, Herrnegger M, Piticar A, Legates DR (2020) Observed and potential impacts of the COVID-19 pandemic on the environment. Int J Environ Res Public Health 17(11):4140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs JE, Richt JA, Mackenzie JS (2007) Introduction: conceptualizing and partitioning the emergence process of zoonotic viruses from wildlife to humans. In: Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission. Springer, New York, pp 1–31

    Chapter  Google Scholar 

  • Chotelersak K, Apiwathnasorn C, Sungvornyothin S, Panasoponkul C, Samung Y, Ruangsittichai J (2015) Correlation of host specificity, environmental factors and oriental rat flea abundance. Southeast Asian J Trop Med Public Health 46(2):198

    PubMed  Google Scholar 

  • Climate Central (2020) This news bites: more mosquito days. https://medialibrary.climatecentral.org/resources/more-mosquito-days

  • Conn JE, Wilkerson RC, Nazare M, Segura O, De Souza RT, Schlichting CD, Povoa MM (2002) Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. University of Vermont, Burlington

    Book  Google Scholar 

  • Connolly C, Keil R, Ali SH (2021) Extended urbanisation and the spatialities of infectious disease: demographic change, infrastructure and governance. Urban Stud 58(2):245–263

    Article  Google Scholar 

  • Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Ko AI (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9(9):e0003898

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa NA, dos Santos Cardoso T, da Costa Neto SF, Maldonado A, Gentile R (2019) Metacommunity structure of helminths of Necromys lasiurus (Rodentia: Sigmodontinae) in different land use areas in the Brazilian Cerrado. J Parasitol 105(2):271–282

    Article  PubMed  Google Scholar 

  • Costa ACTRB, Pereira CR, Sáfadi T, Heinemann MB, Dorneles EMS (2021) Climate influence the human leptospirosis cases in Brazil, 2007–2019: a time series analysis. Trans R Soc Trop Med Hyg 116(2):124–132

    Article  Google Scholar 

  • de Wit LA, Croll DA, Tershy B, Newton KM, Spatz DR, Holmes ND, Kilpatrick AM (2017) Estimating burdens of neglected tropical zoonotic diseases on islands with introduced mammals. Am J Trop Med Hyg 96(3):749

    PubMed  PubMed Central  Google Scholar 

  • Delgado-V CA, French K (2012) Parasite–bird interactions in urban areas: current evidence and emerging questions. Landsc Urban Plan 105(1–2):5–14

    Article  Google Scholar 

  • Dubey S, Singh R, Gupta B, Patel R, Soni D, Dhakad BMS et al (2021) Leptospira: an emerging zoonotic pathogen of climate change, global warming and unplanned urbanization: a review. Architecture 10(17):54

    Google Scholar 

  • Durand B, Lecollinet S, Beck C, Martínez-López B, Balenghien T, Chevalier V (2013) Identification of hotspots in the European Union for the introduction of four zoonotic arboviroses by live animal trade. PLoS One 8(7):e70000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellwanger JH, Chies JAB (2019) The triad “dogs, conservation and zoonotic diseases”—an old and still neglected problem in Brazil. Perspect Ecol Conserv 17(3):157–161

    PubMed  PubMed Central  Google Scholar 

  • Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JA, Veiga ABG, Spilki FR et al (2020) Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc 92:e20191375

    Article  CAS  PubMed  Google Scholar 

  • Eskew EA, Olival KJ (2018) De-urbanization and zoonotic disease risk. Ecohealth 15(4):707–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Espejo W, Celis JE, Chiang G, Bahamonde P (2020) Environment and COVID-19: pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. Sci Total Environ 747:141314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada-Peña A, Ostfeld RS, Peterson AT, Poulin R, de la Fuente J (2014) Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol 30(4):205–214

    Article  PubMed  Google Scholar 

  • Fezi BA (2021) The role of architecture and urbanism in preventing pandemics. https://www.intechopen.com/chapters/76976

  • Fisher B, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68(3):643–653

    Article  Google Scholar 

  • Froeschke G, Matthee S (2014) Landscape characteristics influence helminth infestations in a peri-domestic rodent-implications for possible zoonotic disease. Parasit Vectors 7(1):1–13

    Article  Google Scholar 

  • Gaythorpe KA, Hamlet A, Cibrelus L, Garske T, Ferguson NM (2020) The effect of climate change on yellow fever disease burden in Africa. elife 9:e55619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheler-Costa C, Vettorazzi CA, Pardini R, Verdade LM (2012) The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia 76(2):185–191

    Article  Google Scholar 

  • Gillespie TR, Chapman CA (2008) Forest fragmentation, the decline of an endangered primate, and changes in host–parasite interactions relative to an unfragmented forest. Am J Primatol 70(3):222–230

    Article  PubMed  Google Scholar 

  • Glass GE, Yates TL, Fine JB, Shields TM, Kendall JB, Hope AG et al (2002) Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc Natl Acad Sci 99(26):16817–16822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottdenker NL, Streicker DG, Faust CL, Carroll CR (2014) Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11(4):619–632

    Article  PubMed  Google Scholar 

  • Gulich GA (2016) Epidemiology, driving factors, transmission and control options of Zika virus: a review. J Infect Dis Ther 04:1000278

    Google Scholar 

  • Hafez HM, Hauck R (2015) Zoonoses with public health relevance in poultry. In: Zoonoses-infections affecting humans and animals. Springer, Dordrecht, pp 103–123

    Chapter  Google Scholar 

  • Hayes MA, Piaggio AJ (2018) Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One 13(2):e0192887

    Article  PubMed  PubMed Central  Google Scholar 

  • Heo CC, Rafiz AR, Ngui R (2021) A case of zoonotic Ancylostoma ceylanicum infection in a suburban area of Selangor, Malaysia. Acta Parasitol 67:564–568

    Article  PubMed  Google Scholar 

  • Hillman AE, Lymbery AJ, Elliot AD, Thompson RA (2017) Urban environments alter parasite fauna, weight and reproductive activity in the quenda (Isoodon obesulus). Sci Total Environ 607:1466–1478

    Article  PubMed  Google Scholar 

  • Hutson CL, Lee KN, Abel J, Carroll DS, Montgomery JM, Olson VA et al (2007) Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak. Am J Trop Med Hyg 76(4):757–768

    Article  CAS  PubMed  Google Scholar 

  • Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci 95(7):3743–3747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly-Hope LA, Purdie DM, Kay BH (2004) El Nino southern oscillation and Ross River virus outbreaks in Australia. Vector Borne Zoonot Dis 4(3):210–213

    Article  Google Scholar 

  • Kilpatrick AM, Randolph SE (2012) Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380(9857):1946–1955

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BI, Blanton JD, Gilbert A, Castrodale L, Hueffer K, Slate D, Rupprecht CE (2014) A conceptual model for the impact of climate change on fox rabies in Alaska, 1980–2010. Zoonoses Public Health 61(1):72–80

    Article  CAS  PubMed  Google Scholar 

  • Kosoy M, Bai Y (2019) Bartonella bacteria in urban rats: a movement from the jungles of Southeast Asia to metropoles around the globe. Front Ecol Evol 7:88

    Article  Google Scholar 

  • LaDeau SL, Allan BF, Leisnham PT, Levy MZ (2015) The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol 29(7):889–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V (2010) Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 9(1):1–13

    Article  Google Scholar 

  • Lau CL, Smythe LD, Craig SB, Weinstein P (2010) Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg 104(10):631–638

    Article  PubMed  Google Scholar 

  • Laurimaa L, Süld K, Davison J, Moks E, Valdmann H, Saarma U (2016) Alien species and their zoonotic parasites in native and introduced ranges: the raccoon dog example. Vet Parasitol 219:24–33

    Article  PubMed  Google Scholar 

  • Li X, Gao L, Dai L, Zhang G, Zhuang X, Wang W, Zhao Q (2010) Understanding the relationship among urbanisation, climate change and human health: a case study in **amen. Int J Sustain Dev World Ecol 17(4):304–310

    Article  Google Scholar 

  • Lindsay MD, Broom AK, Wright AT, Johansen CA, Mackenzie JS (1993) Ross River virus isolations from mosquitoes in arid regions of Western Australia: implication of vertical transmission as a means of persistence of the virus. Am J Trop Med Hyg 49(6):686–696

    Article  CAS  PubMed  Google Scholar 

  • Linthicum KJ, Anyamba A, Tucker CJ, Kelley PW, Myers MF, Peters CJ (1999) Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285(5426):397–400

    Article  CAS  PubMed  Google Scholar 

  • López MS, Müller GV, Lovino MA, Gómez AA, Sione WF, Pomares LA (2019) Spatio-temporal analysis of leptospirosis incidence and its relationship with hydroclimatic indicators in northeastern Argentina. Sci Total Environ 694:133651

    Article  PubMed  Google Scholar 

  • Lowe R, Lee SA, O'Reilly KM, Brady OJ, Bastos L, Carrasco-Escobar G, Gasparrini A (2021) Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet Health 5(4):e209–e219

    Article  PubMed  Google Scholar 

  • Maaz D, Krücken J, Blümke J, Richter D, McKay-Demeler J, Matuschka FR, von Samson-Himmelstjerna G (2018) Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles. PLoS One 13(6):e0199385

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackenstedt U, Jenkins D, Romig T (2015) The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int J Parasitol Parasites Wildl 4(1):71–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Majewska AA, Satterfield DA, Harrison RB, Altizer S, Hepinstall-Cymerman J (2019) Urbanization predicts infection risk by a protozoan parasite in non-migratory populations of monarch butterflies from the southern coastal US and Hawaii. Landsc Ecol 34(3):649–661

    Article  Google Scholar 

  • Mayi MPA, Bamou R, Djiappi-Tchamen B, Fontaine A, Jeffries CL, Walker T, Tchuinkam T (2020) Habitat and seasonality affect mosquito community composition in the west region of Cameroon. Insects 11(5):312

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Varshney V, Singh N (2021) Aedes the menace. Cover story, vector borne disease. Down to earth, Net result. pp 28–38

    Google Scholar 

  • Moreno E (2014) Retrospective and prospective perspectives on zoonotic brucellosis. Front Microbiol 5:213

    Article  PubMed  PubMed Central  Google Scholar 

  • Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Daszak P (2012) Prediction and prevention of the next pandemic zoonosis. Lancet 380(9857):1956–1965

    Article  PubMed  PubMed Central  Google Scholar 

  • Mott KE, Desjeux P, Moncayo A, Ranque P, De Raadt P (1990) Parasitic diseases and urban development. Bull World Health Organ 68(6):691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa Y, Emerson GL, Carroll DS, Zhao H, Li Y, Reynolds MG et al (2013) Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg Infect Dis 19(2):237

    Article  PubMed  PubMed Central  Google Scholar 

  • Noti JD, Blachere FM, McMillen CM, Lindsley WG, Kashon ML, Slaughter DR, Beezhold DH (2013) High humidity leads to loss of infectious influenza virus from simulated coughs. PLoS One 8(2):e57485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes H, Rocha FL, Cordeiro-Estrela P (2017) Bats in urban areas of Brazil: roosts, food resources and parasites in disturbed environments. Urban Ecosyst 20(4):953–969

    Article  PubMed  Google Scholar 

  • Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A (2022) The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects 13(1):20

    Article  Google Scholar 

  • Ostfeld RS (2009) Biodiversity loss and the rise of zoonotic pathogens. Clin Microbiol Infect 15:40–43

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases. Can J Zool 78(12):2061–2078

    Article  Google Scholar 

  • Otte J, Pica-Ciamarra U (2021) Emerging infectious zoonotic diseases: the neglected role of food animals. One Health 13:100323

    Article  PubMed  PubMed Central  Google Scholar 

  • Paladsing Y, Boonsri K, Saesim W, Changsap B, Thaenkham U, Kosoltanapiwat N et al (2020) Helminth fauna of small mammals from public parks and urban areas in Bangkok metropolitan with emphasis on community ecology of infection in synanthropic rodents. Parasitol Res 119(11):3675–3690

    Article  PubMed  Google Scholar 

  • Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Working Group on Land Use Change Disease Emergence (2004) Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112(10):1092–1098

    Article  PubMed  PubMed Central  Google Scholar 

  • Paz S (2015) Climate change impacts on West Nile virus transmission in a global context. Philos Trans R Soc B Biol Sci 370(1665):20130561

    Article  Google Scholar 

  • Perec-Matysiak A, Leśniańska K, Buńkowska-Gawlik K, Merta D, Popiołek M, Hildebrand J (2021) Zoonotic genotypes of Enterocytozoon bieneusi in wild living invasive and native carnivores in Poland. Pathogens 10(11):1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeffer M, Dobler G (2010) Emergence of zoonotic arboviruses by animal trade and migration. Parasit Vectors 3(1):1–15

    Article  Google Scholar 

  • Plumer L, Davison J, Saarma U (2014) Rapid urbanization of red foxes in Estonia: distribution, behaviour, attacks on domestic animals, and health-risks related to zoonotic diseases. PLoS One 9(12):e115124

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers RP, Jetz W (2019) Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat Clim Change 9(4):323–329

    Article  Google Scholar 

  • Radi MFM, Hashim JH, Jaafar MH, Hod R, Ahmad N, Nawi AM et al (2018) Leptospirosis outbreak after the 2014 major flooding event in Kelantan, Malaysia: a spatial-temporal analysis. Am J Trop Med Hyg 98(5):1281

    Article  Google Scholar 

  • Rajala EL, Sattorov N, Boqvist S, Magnusson U (2017) Bovine leptospirosis in urban and peri-urban dairy farming in low-income countries: a “one health” issue? Acta Vet Scand 59(1):1–4

    Article  Google Scholar 

  • Ramos RS, Kumar L, Shabani F, Picanço MC (2019) Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agric Syst 173:524–535

    Article  Google Scholar 

  • Redding DW, Moses LM, Cunningham AA, Wood J, Jones KE (2016) Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol Evol 7(6):646–655

    Article  Google Scholar 

  • Robertson LJ, Johansen ØH, Kifleyohannes T, Efunshile AM, Terefe G (2020) Cryptosporidium infections in Africa—how important is zoonotic transmission? A review of the evidence. Front Vet Sci 7:575881

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothenburger JL, Himsworth CH, Nemeth NM, Pearl DL, Jardine CM (2017) Environmental factors and zoonotic pathogen ecology in urban exploiter species. EcoHealth 14(3):630–641

    Article  PubMed  Google Scholar 

  • Rulli MC, D’Odorico P, Galli N, Hayman DT (2021) Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food 2(6):409–416

    Article  CAS  Google Scholar 

  • Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR (2019) Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 13(3):e0007213

    Article  PubMed  PubMed Central  Google Scholar 

  • Saksena S, Fox J, Epprecht M, Tran C, Castrence M, Nong D, Wilcox B (2014) Role of urbanization, land-use diversity, and livestock intensification In zoonotic emerging infectious diseases. Academia, San Francisco

    Google Scholar 

  • Schleuning M, Farwig N, Peters MK, Bergsdorf T, Bleher B, Brandl R, Böhning-Gaese K (2011) Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PLoS One 6(11):e27785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoo LP, Williams SE, HERO, J. M. (2006) Detecting climate change induced range shifts: where and how should we be looking? Austral Ecol 31(1):22–29

    Article  Google Scholar 

  • Simons RR, Gale P, Horigan V, Snary EL, Breed AC (2014) Potential for introduction of bat-borne zoonotic viruses into the EU: a review. Viruses 6(5):2084–2121

    Article  PubMed  PubMed Central  Google Scholar 

  • Slingenbergh J, Gilbert M, Balogh KD, Wint W (2004) Ecological sources of zoonotic diseases. Revue Sci Tech 23(2):467–484

    Article  CAS  Google Scholar 

  • Sorensen CJ, Borbor-Cordova MJ, Calvello-Hynes E, Diaz A, Lemery J, Stewart-Ibarra AM (2017) Climate variability, vulnerability, and natural disasters: a case study of Zika virus in Manabi, Ecuador following the 2016 earthquake. GeoHealth 1(8):298–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumi A, Telan EFO, Chagan-Yasutan H, Piolo MB, Hattori T, Kobayashi N (2017) Effect of temperature, relative humidity and rainfall on dengue fever and leptospirosis infections in Manila, the Philippines. Epidemiol Infect 145(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick WJ, Powell JR (1979) A world-wide survey of genetic variation in the yellow fever mosquito, Aedes aegypti. Genet Res 34(3):215–229

    Article  CAS  PubMed  Google Scholar 

  • Taylor LH, Latham SM, Woolhouse ME (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):983–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesla B, Demakovsky LR, Mordecai EA, Ryan SJ, Bonds MH, Ngonghala CN, Murdock CC (2018) Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc R Soc B Biol Sci 285:0795

    Google Scholar 

  • Thompson RA (2013) Parasite zoonoses and wildlife: one health, spillover and human activity. Int J Parasitol 43(12–13):1079–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Tunali M, Radin AA, Başıbüyük S, Musah A, Borges IVG, Yenigun O, Campos LC (2021) A review exploring the overarching burden of Zika virus with emphasis on epidemiological case studies from Brazil. Environ Sci Pollut Res 28(40):55952–55966

    Article  Google Scholar 

  • Ullmann LS, Langoni H (2011) Interactions between environment, wild animals and human leptospirosis. J Venom Anim Toxins Includ Trop Dis 17:119–129

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2015) World Urbanization Prospects: The 2014 Revision (ST/ESA/SER.A/366). https://population.un.org/wup/publications/files/wup2014-report.pdf

  • von Seidlein L, Alabaster G, Deen J, Knudsen J (2021) Crowding has consequences: prevention and management of COVID-19 in informal urban settlements. Build Environ 188:107472

    Article  Google Scholar 

  • Waldman L (2015) Urbanisation, the peri-urban growth and zoonotic disease. https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/5855/ID563%20Online.pdf?sequence=1&isAllowed=y

  • Wang HJ, Zhang RH, Cole J, Chavez F (1999) El Niño and the related phenomenon Southern Oscillation (ENSO): the largest signal in interannual climate variation. Proc Natl Acad Sci 96(20):11071–11072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegbreit JENY, Reisen WK (2000) Relationships among weather, mosquito abundance, and encephalitis virus activity in California: Kern County 1990–1998. J Am Mosq Control Assoc 16(1):22–27

    CAS  PubMed  Google Scholar 

  • White RJ, Razgour O (2020) Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land-use change. Mammal Rev 50(4):336–352

    Article  Google Scholar 

  • White A, Watt AD, Hails RS, Hartley SE (2000) Patterns of spread in insect-pathogen systems: the importance of pathogen dispersal. Oikos 89(1):137–145

    Article  Google Scholar 

  • Wilcove DS (2010) No way home: the decline of the world’s great animal migrations. Island Press, Washington, DC

    Google Scholar 

  • Wilder-Smith A, Gubler DJ, Weaver SC, Monath TP, Heymann DL, Scott TW (2017) Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis 17(3):e101–e106

    Article  PubMed  Google Scholar 

  • Wilke AB, Chase C, Vasquez C, Carvajal A, Medina J, Petrie WD, Beier JC (2019) Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci Rep 9(1):1–11

    Article  Google Scholar 

  • Wilkinson DA, Marshall JC, French NP, Hayman DT (2018) Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J R Soc Interface 15(149):20180403

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2022). https://www.who.int/news-room/fact-sheets/detail/zoonoses

  • Wu T, Perrings C, Kinzig A, Collins JP, Minteer BA, Daszak P (2017) Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: a review. Ambio 46(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Yabsley MJ, Shock BC (2013) Natural history of zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2:18–31

    Article  PubMed  Google Scholar 

  • Yu D, Li X, Yu J, Shi X, Liu P, Tian P (2021) Whether urbanization has intensified the spread of infectious diseases—renewed question by the COVID-19 pandemic. Front Public Health 9:699710

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarza H, Martínez-Meyer E, Suzán G, Ceballos G (2017) Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: implications for bovine paralytic rabies infection. Vet México 4(3):1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhawana Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, R.S., Kalyan, S., Pathak, B. (2023). Impacts of Urbanization and Climate Change on Habitat Destruction and Emergence of Zoonotic Species. In: Pathak, B., Dubey, R.S. (eds) Climate Change and Urban Environment Sustainability. Disaster Resilience and Green Growth. Springer, Singapore. https://doi.org/10.1007/978-981-19-7618-6_17

Download citation

Publish with us

Policies and ethics

Navigation