Timberline and Climate in the Indian Western Himalayan Region: Changes and Impact on Timberline Elevations

  • Chapter
  • First Online:
Climate Change and Urban Environment Sustainability

Part of the book series: Disaster Resilience and Green Growth ((DRGG))

  • 375 Accesses

Abstract

In Himalayas, the high-elevational mountains have warmed more rapidly in recent decades than other areas of the globe. Himalayan timberline is climate dependent and sensitive to changes, thus can provide biological proof of global warming. The present analysis changes in timberline elevations over four decades and corresponding climatic parameters (temperature and precipitation) in the Western Himalayan region (Himachal Pradesh). Landsat-2 Multispectral Scanner (MSS) and Landsat-8 were used to evaluate the long-term (1976–2015) timberline dynamics. The climate data APHRODITE was used to calculate the annual mean temperature and annual precipitation along the spatially distinct timberline locations. The mean elevation of timberline position has shifted vertically 145 m with a rate of ~37 m per decade (@ 3.7 m per year) over the past four decades, however majority of timberline remained stationary (no shift). The annual mean temperature in timberline elevations of outer Himalayan ranges (away from permanent snowline) and locations of inner Himalayan ranges (near to permanent snowline) has increased at the rate of 0.32 °C decade−1 and 0.23 °C decade−1, respectively. The annual precipitation in timberline elevations of outer Himalayan ranges decreased and at timberline elevations of inner Himalayan ranges increased at the rate of 38 mm decade−1 and 21 mm decade−1, respectively. The study concludes that temperature and precipitation at timberline elevations are one of the main drivers to respond by the timberline vegetation, and yet to better understand and predict timberline response to changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aryal A, Hipkins J, Ji W, Raubeinhimer D, Brunton D (2012) Distribution and diet of brown bear in Annapurna conservation area, Nepal. Ursus 23(2):231–236

    Article  Google Scholar 

  • Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arctic, Antarctic, and Alpine Res 39(2):200–209

    Article  Google Scholar 

  • Berthel N, Schwörer C, Tinner W (2012) Impact of Holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland. Rev Palaeobot Palynol 174:91–100

    Article  Google Scholar 

  • Bharti RR, Rai ID, Adhikari BS et al (2011) Timberline change detection using topographic map and satellite imagery: a critique. Trop Ecol 52:133–137

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30(4):535–548

    Article  Google Scholar 

  • Bolch T, Kutusov S, Li X (2012) Updated GLIMS glacier database for the Tian Shan. National snow and ice data center, Boulder

    Google Scholar 

  • Butler DR, Malanson GP, Walsh SJ, Fagre DB (2009) The changing alpine treeline: the example of glacier National park, MT, USA. In: Developments in earth surface processes, 12. Elsevier, United Kingdom (UK)

    Google Scholar 

  • Dilip PA, Rameshbabu K, Ashok KP et al (2014) Bilinear interpolation image scaling processor for VLSI architecture. Int J Reconfigurable Embedded Syst 3(3)

    Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in western Himalaya. India. Curr Sci 85(8):1135–1136

    Google Scholar 

  • Field CB, Barros VR (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RT (1964) Growth under controlled conditions to explain the hierarchical distributions of a moss, Tetraphis pellucida. Ecol Monogr 34:2–25

    Article  Google Scholar 

  • FSI (2019) Indian state of forest report. Forest survey of India

    Google Scholar 

  • Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation-and bias-corrected ERA-Interim data. Clim Res 58(3):235–246

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  CAS  PubMed  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griggs RF (1937) Timberlines as indicators of climatic trends. Science 85(2202):251–255

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci 103(39):14288–14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049

    Article  PubMed  Google Scholar 

  • Hasson S, Gerlitz L, Schickhoff U, Scholten T, Böhner J (2016) Recent climate change in high Asia. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham

    Google Scholar 

  • Hofgaard A (1997) Inter-relationships between treeline position, species diversity, land use and climate change in the central Scandes Mountains of Norway. Glob Ecol Biogeogr Lett 6:419–429

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410

    Article  Google Scholar 

  • Hou XY (1982a) China vegetation geography and dominant plant composition. Science Press, Bei**g

    Google Scholar 

  • Hou XY (1982b) Vegetational geography and chemical components of dominant plants in China (in Chinese). Science Press, Bei**g

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2013: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Joshi R, Sambhav K, Singh SP (2018) Near-surface temperature lapse rate for treeline environment in western Himalaya and possible impacts on ecotone vegetation. Trop Ecol 59(2):197–209

    Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2007) Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, Northeast Spain. Ecoscience 14(4):507–518

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  PubMed  Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2003) Alpine plant life. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732

    Article  Google Scholar 

  • Kumar P (2012) Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodivers Conserv 21(5):1251–1266

    Article  Google Scholar 

  • Latwal A, Sah P, Sharma S (2018) A cartographic representation of a timberline, treeline and wood vegetation around a Central Himalayan summit using remote sensing method. Trop Ecol 59(2):177–187

    Google Scholar 

  • Latwal A, Sah P, Sharma S et al (2021) Ecology of treeline ecotone. In: Relationship between timberline elevation and climate in Sikkim Himalaya. Springer Nature, Berlin

    Google Scholar 

  • Liao K (1990) The atlas of the Tibetan plateau. Science Press, Bei**g

    Google Scholar 

  • Liang E, Wang Y, Xu Y, Liu B, Shao X (2010) Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24(2):363–373

    Article  Google Scholar 

  • MacDonald GM, Szeicz JM, Claricoates J, Dale KA (1998) Response of the Central Canadian treeline to recent climatic changes. Ann Assoc Am Geogr 88(2):183–208

    Article  Google Scholar 

  • Malanson GP (1997) Effects of feedbacks and seed rain on ecotone patterns. Landsc Ecol 12:27–38

    Article  Google Scholar 

  • Mayor JR, Sanders NJ, Classen AT, Bardgett RD, Clément JC, Fajardo A, Lavorel S, Sundqvist MK, Bahn M, Chisholm C, Cieraad E (2017) Elevation alters ecosystem properties across temperate treelines globally. Nature 542(7639):91–95

    Article  CAS  PubMed  Google Scholar 

  • Ménégoz M, Gallée H, Jacobi HW (2013) Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations. Hydrol Earth Syst Sci 17:3921–3936. https://doi.org/10.5194/hess-17-3921-2013

    Article  Google Scholar 

  • Mohapatra J (2015) The changing face of the alpine ecosystem in the Himalaya. ENVIS Newsl Himal Ecol 12(2):9

    Google Scholar 

  • Mohapatra J, Singh CP, Tripathi OP, Pandya HA (2019) Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya. Int J Remote Sens 40(20):7986–8009. https://doi.org/10.1080/01431161.2019.1608383

    Article  Google Scholar 

  • Nedlo JE, Martin TA, Vose JM, Teskey RO (2009) Growing season temperatures limit growth of loblolly pine (Pinus taeda L.) seedlings across a wide geographic transect. Trees 23(4):751–759

    Article  CAS  Google Scholar 

  • Odland A (2015) Effect of latitude and mountain height on the timberline (Betula pubescens ssp. czerpanovii) elevation along the central Scandinavian mountain range. Fennia Int J Geogr 193(2):260–270

    Google Scholar 

  • Oksanen L, Moen J, Helle T (1995) Timberline patterns in northernmost Fennoscandia. Relative importance of climate and grazing. Acta Bot Fenn 153:93–105

    Google Scholar 

  • Pandey P, Ali SN, Ramanathan AL, Venkataraman G (2017) Regional representation of glaciers in Chandra basin region, western Himalaya. India. Geosci Front 8(4):841–850

    Article  Google Scholar 

  • Qi Z, Liu H, Wu X, Hao Q (2015) Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Glob Change Biol 21(2):816–826

    Article  Google Scholar 

  • Rai ID, Bharti RR, Adhikari BS, Rawat GS (2013) Structure and functioning of timberline vegetation in the western Himalaya: A. High-altitude rangelands and their interfaces in the Hindu Kush Himalayas, p 91

    Google Scholar 

  • Rai ID, Singh G, Pandey G, Rawat GS (2019) Ecology of treeline vegetation in western himalaya: anthropogenic and climatic influences. In: Garkoti SC et al (eds) Tropical ecosystems: structure, functions and challenges in the face of global change. Springer Nature Singapore Pte Ltd, pp 173–212. https://doi.org/10.1007/978-981-13-8249-9_9

    Chapter  Google Scholar 

  • Ren Y-Y, Ren GY, Sun XB et al (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv Clim Chang Res 8(3):148–156

    Article  Google Scholar 

  • Rogora M, Frate L, Carranza ML, Freppaz M, Stanisci A, Bertani I, Bottarin R, Brambilla A, Canullo R, Carbognani M, Cerrato C (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci Total Environ 624:1429–1442

    Article  CAS  PubMed  Google Scholar 

  • Sabin TP, Krishnan R, Vellore R et al (2020) Climate change over the Himalayas. In: Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (eds) Assessment of climate change over the indian region. Springer, Singapore, pp 207–222. https://doi.org/10.1007/978-981-15-4327-2_11

    Chapter  Google Scholar 

  • Sah P, Sharma S (2018) Topographical characterisation of high altitude timberline in the Indian Central Himalayan Region. Trop Ecol 59(2):187–196

    Google Scholar 

  • Sah P, Sharma S (2022) Geo-spatial attributes of Western Himalayan Timberline over Himachal Pradesh. In: Handbook of Himalayan ecosystems and sustainability. CRC Press, Boca Raton

    Google Scholar 

  • Sah P, Latwal A, Sharma S (2021) Ecology of treeline ecotone. Challenges of timberline map** in the Himalaya: a case study of Sikkim Himalaya. Springer Nature, Berlin

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265

    Article  Google Scholar 

  • Schulla J, Jasper K (2007) Model description waSiM-ETH. Institute for atmospheric and climate science, Swiss federal institute of technology, Zürich

    Google Scholar 

  • Sharma E, Tsering K (2009) Climate change in the Himalayas: the vulnerability of biodiversity. Sustain Mt Dev 55:10–12

    Google Scholar 

  • Shrestha AB, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Change 11(1):65–77

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7(5):e36741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA et al (1999) Maximum temperature trends in the himalaya and its vicinity: an analysis based on temperature records from Nepal for the Period 1971–94. J Clim 12:2775–2787

    Article  Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A et al (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr Sci 102:559–562

    Google Scholar 

  • Singh CP, Mohapatra J, Pandya HA, Gajmer B, Sharma N, Shrestha DG (2018) Evaluating changes in treeline position and land surface phenology in Sikkim Himalaya. Geocarto Int 35:453–469. https://doi.org/10.1080/10106049.2018.1524513

    Article  Google Scholar 

  • Singh SP, Sharma S, Dhyani PP (2019) Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodivers Conserv 28(8–9):1997–2016

    Article  Google Scholar 

  • Singh CP, Mohapatra J, Mathew JR et al (2021) Long-term observation and modeling on the distribution and patterns of alpine treeline ecotone in Indian Himalaya. J Geomat 15(1):68–84. ISSN: 0976-1330

    Google Scholar 

  • Takahashi K, Kobori H, Seino T (2011) Effects of temperature and light conditions on growth of current-year seedlings of warm-temperate evergreen tree species and cool-temperate deciduous tree species. In: Casalegno S (ed) Global warming impacts: case studies on the economy, human health, and on urban and natural environments. InTech, Rijeka

    Google Scholar 

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8(2):e57103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson KEN, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17(6):2145–2161

    Article  Google Scholar 

  • Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Wang C, Zhou S, Tang X et al (2011) Temporal and spatial distribution of heavy precipitation over Tibetan plateau in recent 48 years. Sci GeogrSin 31(4):470–477

    CAS  Google Scholar 

  • Wielgolaski FE, Hofgaard A, Holtmeier FK (2017) Sensitivity to environmental change of the treeline ecotone and its associated biodiversity in European mountains. Clim Res 73(1–2):151–166

    Article  Google Scholar 

  • WWW1, Maeda M, Yasutomi N, Yatagai A (2020) National center for atmospheric research staff (2020) the climate data guide: aphrodite: asian precipitation—highly-resolved observational data integration towards evaluation of water resources. https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-resolved-observational-data-integrationtowards

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23(3):520–530

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Zhang B (2015) The mass elevation effect of the Tibetan plateau and its implications for Alpine treelines. Int J Climatol 35(8):1833–1846

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415

    Article  Google Scholar 

  • Zhang BP, Chen XD, Li BL et al (2002) Biodiversity and conservation in the Tibetan plateau. J Geogr Sci 12(2):135–143

    Article  Google Scholar 

  • Zhang Y, Xu M, Adams J, Wang X (2009) Can landsat imagery detect tree line dynamics? Int J Remote Sens 30(5):1327–1340

    Article  Google Scholar 

  • Zheng D, Li BY (1990) Evolution and differentiation of the natural environment of the Qinghai-Tibet plateau. Geogr Res 9(2):1–10

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. S. P. Singh for guidance to conduct this research. Director, G. B. Pant National Institute of Himalayan Environment (NIHE), Almora for providing necessary facilities. IIIT, Hyderabad for computational and climate data support. Financial grant for this study was supported by National Mission on Himalayan Studies, Ministry of Environment, Forest and Climate Change, Govt. of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sah, P., Sharma, S., Latwal, A., Shaik, R. (2023). Timberline and Climate in the Indian Western Himalayan Region: Changes and Impact on Timberline Elevations. In: Pathak, B., Dubey, R.S. (eds) Climate Change and Urban Environment Sustainability. Disaster Resilience and Green Growth. Springer, Singapore. https://doi.org/10.1007/978-981-19-7618-6_12

Download citation

Publish with us

Policies and ethics

Navigation