Role of Earthworm (Eisenia fetida) in Bioconversion of Kitchen Waste in a World of Shifting Climatic Condition

  • Conference paper
  • First Online:
Advances in Waste Management (AIR 2021)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 301))

  • 161 Accesses

Abstract

Urbanization, industrialization and agricultural activities accelerate the accumulation of solid waste around the globe, therefore becoming a major high tech and environmental problem. A sustainable approach to handle this waste is required. This paper highlights the recent trends of formulation of kitchen organic waste and its efficient management through vermicomposting. The vermicompost produced is of significant value along with excellent nutritional level, therefore regarded as a best method for waste disposal. Furthermore, it improves crop production and helps to attain long-term food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta DCM, Solis PO, Villegas TOG, Cardoso VL (2013) Precomposteo de residuos organicos y su efecto enla dinamica poblacional de Eisenia foetida. Agron Costarric 37:127–139

    Google Scholar 

  2. Ali U, Sajid N, Khalid A, Riaz L, Rabbani MM, Syed JH, Malika RN (2015) A review on vermicomposting of organic wastes. Environ Progress Sustain Energy, 1–13

    Google Scholar 

  3. Ansari AA, Hanief A (2015) Microbial degradation of organic waste through vermicomposting. Int J Sust Agric R 2(2):45–54

    Google Scholar 

  4. Ansari A, Sukhraj K (2010) Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. Afr J Agric Res 5(14):1794–1798. https://doi.org/10.5897/ajar09.107

  5. Ansari AA, Jaikishun S, Islam SK, Kuri KF, Nandwani D (2016) Principles of vermitechnology in sustainable organic farming with special reference to Bangladesh. In: Nandwani D (eds) Organic farming for sustainable agriculture. Sustainable development and biodiversity. 9. Springer International Publishing, Switzerland, pp 213–229. https://doi.org/10.1007/978-3-319-26803-3_10

  6. Bueno MP, Diaz BMJ, Cabrera CF (2008) Capitulo 4. Factores que Afectan al Proceso de Compostaje

    Google Scholar 

  7. Chang NB, Davila E (2008) Municipal solid waste characterizations and management strategies for the Lower Rio Grande Valley. Texas. Waste Manag 28(5):776–794

    Article  Google Scholar 

  8. Charles W, Walker L, Cord-Ruwisch R (2009) Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresoure Technol 100:2329–2335

    Article  CAS  Google Scholar 

  9. Curry J (1998) Factors affecting the abundance of earthworms in soils. In: Earthworm Ecology. https://doi.org/10.1201/9781420039719.pt3

  10. Decaens T (2010) Macroecological patterns in soil communities. Glob Ecol Biogeogr 19:287–302

    Article  Google Scholar 

  11. Dohaish JAB (2020) Vermicomposting of organic waste with Eisenia fetida increases the content of exchangeable nutrients in soil. Pak J Biol Sci 23(4):501–509. https://doi.org/10.3923/pjbs.2020.501.509

    Article  CAS  Google Scholar 

  12. Dominguez J, Edwards CA (2011) Biology and ecology of earthworm species used for vermicomposting. In: Edwards CA, Arancon NQ, Sherman (eds) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, Taylor & Francis Group, Boca Raton, USA, pp 27–40

    Google Scholar 

  13. Edwards CA, Bohlen PJ (1996) Earthworm ecology and biology, 3rd edn. Chapman & Hall, London, pp 196–212

    Google Scholar 

  14. Edwards WM, Shipitalo MJ (1998) Consequences of earthworms in agricultural soils: aggregation and porosity. In: Earthworm Ecology. St. Lucie Press, Boca Raton, Florida

    Google Scholar 

  15. FAO (2013) Manual de Compostaje del Agricultor: Experiencias en America Latina; Organization de las Naciones Unidas para la Alimentacion y la Agricultura: Santiago, Chile. ISBN 978-92-5-307844-8

    Google Scholar 

  16. Gonzalez EC, Diaz MRG, Salas LDM, Castillo MPS (2019) Pre-Composting and vermicomposting of pineapple (Ananas Comosus) and vegetable waste. Appl Sci 9:3564. https://doi.org/10.3390/app9173564

    Article  CAS  Google Scholar 

  17. Gunadi B, Edwards CA (2003) The effects of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida (Savigny) (Lumbricidae). Pedobiologia 47:321–329

    Article  Google Scholar 

  18. Gustavsson J, Cederberg C, Sonesson U (2011) Global food losses and food waste: extent, causes and prevention. Food and Agriculture Organization of the United Nations (FAO), Rome, pp 1–29

    Google Scholar 

  19. Haokip SL, Singh TB (2012) Diversity and distribution of earthworms in a natural reserved and disturbed sub-tropical forest ecosystem of Imphal-West, Manipur. India. Int Multidisciplinary Res J 2(2):28–34

    Google Scholar 

  20. Hashimoto S, Furuya M, You X, Wanibuchi G, Tokumoto H, Tojo M, Shiragaki K (2021) Chemical and microbiological evaluation of Vermicompost made from school food waste in Japan. JARQ. 55(3):225–232

    Article  CAS  Google Scholar 

  21. Huang K, Li F, Wei Y, Fu X, Chen X (2014) Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresoure Technol 170:45–52. https://doi.org/10.1016/j.biortech.2014.07.058

    Article  CAS  Google Scholar 

  22. Huntley S, Ansari AA (2021) Vermicomposting evaluation of different combinations of organic waste using Perionyx excavates. Int J Recycling Organic Waste Agric 10:287–295

    Google Scholar 

  23. Ismail SA (1997) Vermicology: the biology of earthworms. Orient Longman Press, Hyderabad, p 92

    Google Scholar 

  24. Ismail SA (2005) In: The earthworm book. Other India Press, Mapusa, p 101

    Google Scholar 

  25. Jara-Samaniego J, Perez-Murcia MD, Bustamante MA, Paredes C, Perez-Espinosa A, Gavilanes-Teran I, Lopez M, Marhuenda-Egea FC, Brito H, Moral R (2017) Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. PLoS ONE 12(7):e0181621

    Article  CAS  Google Scholar 

  26. Kaviraj, Sharma S (2003) Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresoure Technol 90:169–173

    Google Scholar 

  27. Korav S, Malannavar AB, Sharma L (2021) A review-vermicomposting: an effective option for agriculture waste management. Biolog Forum Int J 13(2):211–219

    Google Scholar 

  28. Kumar A, Prakash CHB, Brar NS, Kumar B (2018) Potential of vermicompost for sustainable crop production and soil health improvement in different crop** systems. Int J Curr Microbiol Appl Sci 7:1042–1055

    Article  CAS  Google Scholar 

  29. Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Article  Google Scholar 

  30. Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, New York. https://doi.org/10.1007/978-94-017-5279-4

  31. Lee KE (1985) Earthworms: their ecology and relationships with soils and land use. Academic Press, Sydney, p 411

    Google Scholar 

  32. Lemtiri A, Colinet G, Alabi T, Cluzeau D, Zirbes L, Haubruge E, Francis F (2014) Impacts of earthworms on soil components and dynamics. a review. Biotechnol. Agron Soc Environ 18(1):121–133

    CAS  Google Scholar 

  33. Londhe PB, Bhosale SM (2015) Recycling of solid wastes into organic fertilizers using low cost treatment: vermicomposting. Int J Innov Eng Res Technol 2:1–11. https://goo.gl/0FouGw

  34. Lopes FL, Lopes SWT, Milori DMBP, Luiz SM, Martin NL (2010) Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresoure Technol 101:1927–1936

    Article  Google Scholar 

  35. Mondal P, Nandan A, Siddiqui NA, Yadav BP (2014a) Impact of soak pit on groundwater table. Environ Pollut Control J 18(1):12–17

    Google Scholar 

  36. Mondal P, Nandan A, Siddiqui DN, Yadav BP (2014b) Removal of fluoride from water by suitable low cost environmental friendly methods. Environ Pollut Control J 17(6)

    Google Scholar 

  37. Nagavallemma KP, Wani SP, Lacroix S, Padmaja VV, Vineela C, Babu RM, Sahrawat KL (2006) Vermicomposting: recycling wastes into valuable organic fertilizer. Global theme on agroecosystems, Report No. 8. Int Crops Res Inst Semi-Arid Tropics 2(1):1–20

    Google Scholar 

  38. Nainawat R, Bhardwaj N (2001) Density and distribution of earthworms in different localities of Jaipur. J Eco Physiol 4(1/2):9–13

    Google Scholar 

  39. Nair J, Sekiozoic V, Anda M (2005) Effect of pre-composting on vermicomposting of kitchen waste. Bioresoure Technol 97:2091–2095

    Article  Google Scholar 

  40. Nandan A, Siddiqui NA, Singh C, Aeri A (2021) Occupational and environmental impacts of indoor air pollutant for different occupancy: a review. Toxicol Environ Heal Sci 13(4):303–322

    Article  Google Scholar 

  41. Nandan A, Yadav BP, Baksi S, Bose D (2017) Recent scenario of solid waste management in India. World Scientific News 66:56–74

    CAS  Google Scholar 

  42. Narayan J (2000)Vermicomposting of biodegradable wastes collected from Kuvempu University campus using local and exotic species of earthworm. In: Proceedings of a national conference on industry and environment, Karad, India, pp 417–419

    Google Scholar 

  43. Oluseyi EE, Ewemoje TA, Adedeji AA (2016) Comparative analysis of pit composting and vermicomposting in a tropical environment. Int J Biolog Biomolec Agric Food Biotechnol Eng 10(3):174–177

    Google Scholar 

  44. Pagaria P, Totwat KL (2007) Effects of press mud and spent wash in integration with s with phosphogypsum on metallic cation buildup in the calcareous sodic soils. J Indian Soc Soil Sci 55(1):52–57

    CAS  Google Scholar 

  45. Panday SN, Yadav A (2009) Effect of vermicompost amended alluvial soil on growth and metabolic responses of rice (Oryza sativa L.) plants. J Eco-friendly Agric 4(1):35–37

    Google Scholar 

  46. Pathma J, Sakthivel N (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springer Plus 1:26. https://goo.gl/pv6t39

  47. Pramanik P, Ghosh G, Ghosal P, Banik P (2007) Changes in organic–C, N, P and K and enzyme activities in vermicompost of biodegradable organic wastes underliming and microbial inoculants. Bioresoure Technol 98:2485–2494

    Article  CAS  Google Scholar 

  48. Rajkhowa DJ, Bhattacharyya N, Sarma VK, Mahanta K (2014) Diversity and distribution of earthworms in different soil habitats of Assam, North-East India, an Indo-Burma Biodiversity Hotspot. Proc Nat Acad Sci India Sect B Biol Sci 85(2):1–10. https://doi.org/10.1007/s40011-014-0380-1

  49. Rakkini VM, Vincent S, Kumar AS, Baskar K (2017) An overview: organic waste management by earthworm. J Civil Eng Environ Sci 3(1):013–017

    Google Scholar 

  50. Ramnarain YI, Ansari AA, Ori L (2019) Vermicomposting of different organic materials using the epigeic earthworm Eisenia fetida. Int J Recycling Organic Waste Agric 8:23–26

    Article  Google Scholar 

  51. Singh J (1997) Habitat preferences of selected Indian earthworm species and their efficiency in reduction of organic material. Soil Biol Biochem 29:585–588

    Article  CAS  Google Scholar 

  52. Sumi MG, Vani M, Idicula DV, Mini KD (2014) Solid waste management using vermicomposting and kodmic? Bio-pedestal column and its utility as organic manure. Asian J Microbiol Biotechnol Environ Sci 16:333–338. https://goo.gl/A0NulQ

  53. Suthar S (2008) Development of a novel epigeic-anecic-based polyculture vermireactor for efficient treatment of municipal sewage water sludge. Int J Environ Waste Manag 2 (½): 84–101

    Google Scholar 

  54. Tiwari N, Negi N, Raj R, Joshi N (2017) A study on physico—chemical and myco—floral proportions of compost and vermicompost. J Env Bio-Sci 31(2):375–377

    Google Scholar 

  55. Vasanthi P, Kamala S, Balamurugan K, Udayakumar S (2018) Effect of Vermicomposting of Kitchen Waste Using Lampito mauritii. International J Res Analyt Rev (IJRAR) 5(4):515–519

    Google Scholar 

  56. Walkley A, Black CA (1934) An experiment of Degtjareff methods for determining soil organic matter and a proposed modification of the chronic acid titration methods. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  57. Yadav A, Garg VK (2009) Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. J Hazard Mater 168:262–268

    Article  CAS  Google Scholar 

  58. Yadav A, Garg VK (2011) Recycling of organic wastes by employing Eisenia fetida. Bioresoure Technol 102:2874–2880

    Article  CAS  Google Scholar 

  59. Yadav A, Garg VK (2019) Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresoure Technol 274:512–517

    Article  CAS  Google Scholar 

  60. Yadav J, Gupta KR (2017) Dynamics of nutrient profile during vermicomposting. Ecol Environ Conservat 23(1):516–521. http://www.envirobiotechjournals.com

Download references

Disclaimer

The presentation of material and details in maps used in this chapter does not imply the expression of any opinion whatsoever on the part of the Publisher or Author concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its borders. The depiction and use of boundaries, geographic names and related data shown on maps and included in lists, tables, documents, and databases in this chapter are not warranted to be error free nor do they necessarily imply official endorsement or acceptance by the Publisher or Author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwari, N., Rana, D., Joshi, N. (2023). Role of Earthworm (Eisenia fetida) in Bioconversion of Kitchen Waste in a World of Shifting Climatic Condition. In: Siddiqui, N.A., Baxtiyarovich, A.S., Nandan, A., Mondal, P. (eds) Advances in Waste Management. AIR 2021. Lecture Notes in Civil Engineering, vol 301. Springer, Singapore. https://doi.org/10.1007/978-981-19-7506-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7506-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7505-9

  • Online ISBN: 978-981-19-7506-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation