The Importance and Utilization of Palm Oil as a Fish Oil Replacement in Aquaculture

  • Chapter
  • First Online:
Emerging Sustainable Aquaculture Innovations in Africa

Abstract

The oil palm tree is a centuries-old tropical plant native to West Africa. Palm oil has been used as a food and medicine for centuries. Crude palm oil (CPO) is extracted from the oil palm tree’s fruit (Elaeis guineensis). Palmitic acid, carotene, and vitamin E are abundant in the oil. This chapter reviewed the progress made in using palm oil as an alternative lipid source in aquafeeds. This section discusses the most recent significant materials discovered in the literature on palm oil processing, refining, and distribution compared to other vegetable oils. Furthermore, palm oil in aquafeeds may or may not compromise fish growth and feed utilization composition. Finally, the effect of replacing fish oil with palm oil on immune and antioxidant capacity was discussed. This could be an additional good source of aquafeed oil for African aquaculture. More research in the African setting, however, is required to optimize this ingredient in different culture species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abasubong KP, Li XF, Zhang DD, Jia ET, **ang-Yang Y, Xu C, Liu WB (2017) Dietary supplementation of xylooligosaccharides benefits the growth performance and lipid metabolism of common carp (Cyprinus carpio) fed high-fat diets. Aquac Nutr 24:1416–1424. https://doi.org/10.1111/anu.12678

    Article  CAS  Google Scholar 

  • Abasubong KP, Li XF, Adjoumani JJY, Jiang GZ, Desouky HE, Liu WB (2022) Effects of dietary xylooligosaccharide prebiotic supplementation on growth, antioxidant and intestinal immune-related genes expression in common carp Cyprinus carpio fed a high-fat diet. J Anim Physiol Anim Nutr 106(2):403–418. https://doi.org/10.1111/jpn.13669

    Article  CAS  Google Scholar 

  • Abbasi A, Oujifard A, Torfi Mozanzadeh M, Habibi H, Nafisi Bahabadi M (2020) Dietary simultaneous replacement of fish meal and fish oil with blends of plant proteins and vegetable oils in yellowfin seabream (Acanthopagrus latus) fry: growth, digestive enzymes, antioxidant status and skin mucosal immunity. Aquac Nutr 26:1131–1142. https://doi.org/10.1111/anu.13070

    Article  CAS  Google Scholar 

  • Abdullah N, Sulaiman F (2013) The oil palm wastes in Malaysia. Intech

    Google Scholar 

  • Adly A (2010) Oxidative stress and disease: an updated review. J Immunol Res 3:129–145. https://doi.org/10.3923/rji.2010.129.145

    Article  CAS  Google Scholar 

  • Ahmad W, Stone D, Schuller KA (2013) Dietary fish oil replacement with palm or poultry oil increases fillet oxidative stability and decreases liver glutathione peroxidase activity in barramundi (Lates calcarifer). Physiol Biochem 39:1631–1640. https://doi.org/10.1007/s10695-013-9815-539

    Article  Google Scholar 

  • Akira S, Hirano T, Taga T, Kishimoto T (1990) Biology of multifunctional cytokines: IL6 and related molecules (IL1 and TNF). FASEB J 4:2860–2867

    Article  CAS  PubMed  Google Scholar 

  • Akpanabiatu MI, Ekpa OD, Mauro A, Rizzo R (2001) Nutrient composition of Nigerian palm kernel from the dura and tenera varieties of the oil palm (Elaeis guineensis). Food Chem 72:173–177

    Article  CAS  Google Scholar 

  • Aliyu-Paiko M, Hashim R (2012) Effects of substituting dietary fish oil with crude palm oil and palm fatty acid distillate on growth, muscle fatty acid composition and the activities of hepatic lipogenic enzymes in snakehead (Channa striatus, Bloch 1793) fingerling. Aquac Res 43:767–776. https://doi.org/10.1111/j.1365-2109.2011.02888.x

    Article  CAS  Google Scholar 

  • Alvarez A, Fontanillas R, Hernández-Contreras A, Hernández MD (2020) Partial replacement of fish oil with vegetal oils in commercial diets: the effect on the quality of gilthead seabream (Sparus aurata). Anim Feed Sci Technol 265:114504. https://doi.org/10.1016/j.anifeedsci.2020.114504

    Article  CAS  Google Scholar 

  • Asdari R, Biswas A, Yamamoto S, Araki H, Kawashima K, Hashim R, Takii K (2014) Effect of dietary palm oil and medium chain triglycerides on growth and fatty acid profiles of Japanese catfish Silurus asotus juveniles. Aquac Sci 62(1):45–54

    CAS  Google Scholar 

  • Ayeleso A, Brooks N, Oguntibeju O (2014) Modulation of antioxidant status in streptozotocin-induced diabetic male wistar rats following intake of red palm oil and/or rooibos. Asian Pac J Trop Med 7:536–544. https://doi.org/10.1016/S1995-7645(14)60090-0

    Article  CAS  PubMed  Google Scholar 

  • Ayisi CL, Zhao J, Rupia EJ (2017) Growth performance, feed utilization, body and fatty acid composition of Nile tilapia (Oreochromis niloticus) fed diets containing elevated levels of palm oil. Aquac Fish 2:67–77. https://doi.org/10.1016/j.aaf.2017.02.001

    Article  Google Scholar 

  • Ayisi CL, Zhao JL, Hua XM, Apraku A (2018) Replacing fish oil with palm oil: effects on mRNA expression of fatty acid transport genes and signalling factors related to lipid metabolism in Nile tilapia (Oreochromis niloticus). Aquac Nutr 24:1822–1833. https://doi.org/10.1111/anu.12821

    Article  CAS  Google Scholar 

  • Ayisi CL, Zhao J, Yame C, Apraku A, Debra G (2019) Effects of replacing fish oil with palm oil in diets of Nile tilapia (Oreochromis niloticus) on muscle biochemical composition, enzyme activities, and mRNA expression of growth-related genes. Fish Aquatic Sci 22:25. https://doi.org/10.1186/s41240-019-0139-y

    Article  CAS  Google Scholar 

  • Bahurmiz OM, Ng W (2007) Effects of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size. Aquaculture 262:382–392

    Article  CAS  Google Scholar 

  • Balbuena-Pecino S, Riera-Heredia N, Gasch-Navalón E, Sánchez-Moya A, Fontanillas R, Gutiérrez J, Navarro I, Capilla E (2021) Musculoskeletal growth modulation in gilthead sea bream juveniles reared at high water temperature and fed with palm and rapeseed oils-based diets. Animals 11:260. https://doi.org/10.3390/ani11020260

    Article  PubMed  PubMed Central  Google Scholar 

  • Baryeh EA (2001) Effects of palm oil processing parameters on yield. J Food Eng 48:1–6

    Article  Google Scholar 

  • Bassim HH, Abdul LA, Ng AH (2003) Removal of residual oil from palm oil mill effluent using solvent extraction method. Jurnal Teknologi 38:33–42

    Google Scholar 

  • Bell JG, Henderson RJ, Tocher DR, Mcghee F, Dick JR, Porter A, Smullen RP, Sargent JR (2002) Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. J Nutr 132:222–230. https://doi.org/10.1093/jn/132.2.222

    Article  CAS  PubMed  Google Scholar 

  • Benadé SAJ (2003) A place for palm fruit oil to eliminatevitamin A deficiency. Asia Pac J Clin Nutr 12:369–372

    PubMed  Google Scholar 

  • Benedito-Palos L, Navarro JC, Sitjà-Bobadilla A, Gordon Bell J, Kaushik S, Pérez-Sánchez J (2008) High levels of vegetable oils in plant protein-rich diets fed to gilthead sea bream (Sparus aurata L.): growth performance, muscle fatty acid profiles and histological alterations of target tissues. Br J Nutr 100:992–1003. https://doi.org/10.1017/S0007114508966071

    Article  CAS  PubMed  Google Scholar 

  • Berger KG (2007) Trans-free fats with the products of the oil palm—a selective review. Czech J Food Sci 25:174–181. https://doi.org/10.17221/688-CJFS

    Article  CAS  Google Scholar 

  • Ble CM, Etchian OA, Otchoumou AK, Yapi JN, Yao LA (2018) Effects of dietary palm oil on the whole-body mineral composition of African catfish, Heterobranchus longifilis (Teleostei, Clariidae). Palm oil, pp 171–181

    Google Scholar 

  • Carter C, Finley W, Fry J, Jackson D, Willis L (2007) Palm oil markets and future supply. Eur J Lipid Sci Technol 109:307–314. https://doi.org/10.1002/ejlt.200600256

    Article  CAS  Google Scholar 

  • Christain LA, Zhao J, Wu JW, Loor JJ (2018) Replacement of fish oil with palm oil: effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus). PLoS One 13:e0196100. https://doi.org/10.1371/journal.pone.0196100

    Article  CAS  Google Scholar 

  • Corley RHV, Tinker PB (2003) The products of the oil palm and their extraction. In: Corley RHV, Tinker PB (eds) Theoil palm, 4th edn. Blackwell Science, Oxford, pp 445–466

    Chapter  Google Scholar 

  • Das S, Nesaretnam K, Das DK (2007) Tocotrienols in cardioprotection. Vitam Horm 75:285–299. https://doi.org/10.1016/S0083-6729(06)75011-7

    Article  CAS  PubMed  Google Scholar 

  • de Souza Alves LF, Rocha JDM, dos Santos Cardoso M, de Freitas JMA, Feiden A, Boscolo WR (2021) Palm oil in diets for Nile tilapia (Oreochromis niloticus) post-larvae. Res Soc Dev 10:1–10. https://doi.org/10.33448/rsd-v10i14.22099

    Google Scholar 

  • Edem DO, Eka OU, Umoh IB (2002) Feeding of red palm oil-supplemented diets to rats may impact positively on vitamin A status. Int J Food Sci Nutr 53:285–291. https://doi.org/10.1080/09637480220138115

    Article  CAS  PubMed  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018—meeting the sustainable development goals. Rome. Licence: CCBY-NC-SA 3.0 IGO

    Google Scholar 

  • Fattore E, Fanelli R (2013) Palm oil and palmitic acid: a review on cardiovascular effects and carcinogenicity. Int J Food Sci Nutr 64:648–659. https://doi.org/10.3109/09637486.2013.768213

    Article  CAS  PubMed  Google Scholar 

  • Fonseca-Madrigal J, Karalazos V, Campbell PJ, Bell JG, Tocher DR (2015) Influence of dietary palm oil on growth, tissue fatty acid compositions, and fatty acid metabolism in liver and intestine in rainbow trout (Oncorhynchus mykiss). Aquac Nutr 11:241–250. https://doi.org/10.1111/j.1365-2095.2005.00346.x

    Article  Google Scholar 

  • Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ (2005) Risk-based consumption advice for farmed Atlantic and wild Pacific Salmon contaminated with dioxins and dioxin-like compounds. Environ Health Perspect 113:552–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster R, Williamson C, Lunn J (2009) Briefing paper: culinary oils and their health effects. Nutr Bull 34:4–47

    Article  Google Scholar 

  • Fountoulaki E, Vasilaki A, Hurtado R, Grigorakis K, Karacostas I, Nengas I, Rigos G, Kotzamanis Y, Venou B, Alexis MN (2009) Fish oil substitution by vegetable oils in commercial diets for gilthead sea bream (Sparus aurata L.); effects on growth performance, flesh quality and fillet fatty acid profile. Aquaculture 289:317–332. https://doi.org/10.1016/j.aquaculture.2009.01.023

    Article  CAS  Google Scholar 

  • Fukada H, Kitagima R, Shinagawa J, Morino H, Masumoto T (2020) Effects of complete replacement of fish oil with plant oil mixtures and algal meal on growth performance and fatty acid composition in juvenile yellowtail Seriola quinqueradiata. Fish Sci 86:107–118

    Article  CAS  Google Scholar 

  • Gudid SN, Lim LS, Yong A, Yanuhar U, Shapawi R (2020) Growth performance and organoleptic quality of hybrid grouper (Epinephelus fuscogutattus× Epinephelus lanceolatus ♂) fed palm-oil based diets at grow-out stage. Sains Malaysiana 49:1567–1576. https://doi.org/10.17576/jsm-2020-4907-09

    Article  CAS  Google Scholar 

  • Gunstone FD (2011) Vegetable oils in food technology: composition,properties and uses, 2nd edn. Blackwell Publishing, West Sussex, pp 25–133

    Book  Google Scholar 

  • Guo H, Chen C, Yan X, Li Y, Wang S (2021) Effects of different dietary oil sources on growth performance, antioxidant capacity and lipid deposition of juvenile golden pompano Trachinotus ovatus. Aquaculture 530:735923. https://doi.org/10.1016/j.aquaculture.2020.735923

    Article  CAS  Google Scholar 

  • Han YZ, Ren TJ, Jiang ZQ, Jiang BQ, Gao J, Koshio S, Komilus CF (2012) Effects of palm oil blended with oxidized fish oil on growth performances, hematology, and several immune parameters in juvenile Japanese sea bass, Lateolabrax japonicas. Fish Physiol Biochem 38:1785–1794. https://doi.org/10.1007/s10695-012-9675-4

    Article  CAS  PubMed  Google Scholar 

  • Han YZ, Jiang ZQ, Ren TJ, Koshio S, Gao J, Komilus CF, Jiang BQ (2015) Effect of dietary fish oil replacement with palm oil on growth performance, hematology and liver anti-oxidative enzymes of juvenile Japanese flounder Paralichthys olivaceus (Temminck & Schlegel, 1846). J Appl Ichthyol 31:518–524. https://doi.org/10.1111/jai.12776

    Article  CAS  Google Scholar 

  • Hodar AR, Vasava RJ, Mahavadiya DR, Joshi NH (2020) Fish meal and fish oil replacement for aqua feed formulation by using alternative sources: a review. J Exp Zool India 23(1):13–21

    Google Scholar 

  • Hof K, West CE, Weststrate JA, Hautvast J (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506. https://doi.org/10.1093/jn/130.3.503

    Article  Google Scholar 

  • Huang Y, Wen X, Li S, Li W (2016) Effects of dietary fish oil replacement with palm oil on the growth, feed utilization, biochemical composition, and antioxidant status of Juvenile Chu’s Croaker, Nibea coibor. J World Aquac Soc 47(6)

    Google Scholar 

  • Huang Q, Wang X, Liu J, Wang H, Miao Y, Zhang C, Zhang M, Qin C, Qin JG, Chen LQ (2022) Effect of vitamin A supplementation on growth performance,lipid deposition, antioxidant ability, and immunity in Juvenile Chinese Mitten Crab Eriocheir sinensis fed diet with fish oil totally replaced by palm oil. Aquac Nutr 2022:3746245. https://doi.org/10.1155/2022/3746245

    Article  CAS  Google Scholar 

  • Komilus CF, Shichi N, Koshio S, Ishikawa M, Makita C (2008) Influences of palm oil blended with fish oil on growth performances and lipid profiles of Red Sea bream Pagrus major. Aquac Sci 56:317–326

    CAS  Google Scholar 

  • Koushki M, Nahidi M, Cheraghali F (2015) Physico-chemical properties, fatty acid profile and nutrition in palm oil. J Paramed Sci 6:117–134

    Google Scholar 

  • Kushairi A, Ong-Abdullah M, Nambiappan B, Hishamuddin E, Kadir A (2019) Oil palm economic performance in Malaysia and R&D progress in 2018. J Oil Palm Res 31:165–194

    Google Scholar 

  • Li X, Ji R, Cui K, Chen Q, Chen Q, Fang W, Mai K, Zhang Y, Xu W, Ai Q (2019) High percentage of dietary palm oil suppressed growth and antioxidant capacity and induced the inflammation by activation of TLR NF κB signaling pathway in large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol 87:600–608. https://doi.org/10.1016/j.fsi.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  • Lim PK, Boey PL, Ng WK (2001) Dietary palm oil level affects growth performance, protein retention and tissue vitamin E concentration of African catfish, Clarias gariepinus. Aquaculture 202:101–112. https://doi.org/10.1016/s0044-8486(01)00563-4

    Article  CAS  Google Scholar 

  • Lupiañez-Perez I, Uttumchandani SK, Morilla-Herrera JC, Martin-Santos FJ, Fernandez-Gallego MC, Navarro-Moya FJ, Lupiañez-Perez Y, Contreras-Fernandez E, Morales-Asencio JM (2015) Topical olive oil is not inferior to hyperoxygenated fatty aids to prevent pressure ulcers in high-risk immobilised patients in home care. Results of a multicentre randomised triple-blind controlled non-inferiority trial. PLos One 10:e0122238. https://doi.org/10.1371/journal.pone.0122238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma CY, Xu ZH, Lv H (2019) Low n-6/ n-3 PUFA ratio improves inflammation and myocardial ischemic reperfusion injury. Biochem Cell Biol 97:621–629. https://doi.org/10.1139/bcb-2018-0342

    Article  CAS  PubMed  Google Scholar 

  • Mba OI, Dumont M-J, Ngadi M (2015) Palm oil: processing, characterization and utilization in the food industry—a review. Food Biosci 10:26–41. https://doi.org/10.1016/j.fbio.2015.01.003

    Article  CAS  Google Scholar 

  • Mock TS, Francis DS, Jago MK, Glencross BD, Smullen RP, Keast R, Turchini GM (2019) Altered levels of shorter vs long-chain omega-3 fatty acids in commercial diets for market-sized Atlantic salmon reared in seawater—effects on fatty acid composition, metabolism and product quality. Aquaculture 499:167–177

    Article  CAS  Google Scholar 

  • Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296:1885–1899. https://doi.org/10.1001/jama.296.15.1885

    Article  CAS  PubMed  Google Scholar 

  • Mu H, Wei C, Zhang Y, Zhou H, Pan Y, Chen J, Zhang W, Mai K (2019) Impacts of replacement of dietary fish oil by vegetable oils on growth performance, anti-oxidative capacity, and inflammatory response in large yellow croaker Larimichthys crocea. Fish Physiol Biochem 46:231–245. https://doi.org/10.1007/s10695-019-00712-8

    Article  CAS  PubMed  Google Scholar 

  • Nasopoulou C, Zabetakis I (2012) Benefits of fish oil replacement by plant originated oils in compounded fish feeds. A review. LWT Food Sci Technol 47:217–224. https://doi.org/10.1016/j.lwt.2012.01.018

    Article  CAS  Google Scholar 

  • Ng WK, Lim PK, Sidek H (2001) The influence of a dietary lipid source on growth, muscle fatty acid composition and erythrocyte osmotic fragility of hybrid tilapia. Fish Physiol Biochem 25:301–310. https://doi.org/10.1023/A:1023271901111

    Article  Google Scholar 

  • Ng WK, Lim PK, Boey PL (2003) Dietary lipid and palm oil source affects growth, fatty acid composition and muscle a-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture 215:229–243

    Article  CAS  Google Scholar 

  • Ng WK, Yan W, Ketchimenin P, Yuen KH (2004) Replacement of dietary fish oil with palm fatty acid distillate elevates tocopherol and tocotrienol concentrations and increases oxidative stability in the muscle of African catfish, Clarias gariepinus. Aquaculture 233(1–4):423–437. https://doi.org/10.1016/j.aquaculture.2003.10.013

    Article  CAS  Google Scholar 

  • Ng WK, Tocher DR, Bell JG (2007) The use of palm oil in aquaculture feeds for salmonid species. Eur J Lipid Sci Technol 109:394–399

    Article  CAS  Google Scholar 

  • Norhuda I, Omar A (2009) Mass transfer of palm kernel oil under supercritical conditions. Proc World Acad Sci Eng Technol 49:169–172

    Google Scholar 

  • O’Brien RD (2010) Fats and oils: formulating and processing for applications, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Obibuzor JU, Okogbenin EA, Abigor RD (2012) Oil recovery from palm fruits and palm kernel. In: Lai O-M, Tan C-P, Akoh CC (eds) Palm oil: production, processing, characterization and uses. AOCS Press, Urbana, pp 299–328

    Chapter  Google Scholar 

  • Oil World (2013) Oil world annual 2013. http://www.oilworld.biz/app.php. Released June 201

  • ** B, May CY (2000) Valuable phytonutrients in commercial red palm olein. Palm Oil Deve 32:20–25

    Google Scholar 

  • Poku K (2002) Small-scale palm oil processing in Africa. FAO Agricultural Services Bulletin, #148. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ravichandran S, Kumaravel K, Florence EP (2011) Nutritive composition of some edible fin fishes. Int J Zool Res 7:241–251. https://doi.org/10.3923/ijzr.2011.241.251

    Article  CAS  Google Scholar 

  • Rice R (2009) Nutritional value of fish oils. In: Rossell B (ed) Fish oils. Blackwell, Chichester, pp 131–154

    Google Scholar 

  • Riera-Heredia N, Sanchez-Moya A, Balbuena-Pecino S, Fontanillas R, Gutierrez J, Capilla E (2020) The combination of palm and rapeseed oils emerges as a good dietary alternative for optimal growth and balanced lipid accumulation in juvenile gilthead sea bream reared at an elevated temperature. Aquaculture 526:735396. https://doi.org/10.1016/j.aquaculture.2020.735396

    Article  CAS  Google Scholar 

  • Röbbelen G (1990) Mutation breeding for quality improvement—a case study for oilseed crops. Mutat Breed Rev 6:1–44

    Google Scholar 

  • Sambanthamurthi R, Sundram K, Tan YA (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558. https://doi.org/10.1016/s0163-7827(00)00015-1

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MT, Becker EM, Skibsted LH (2006) Molecular mechanism of antioxidant synergism of tocotrienols and carotenoids in palm oil. Agric Food Chem 54:3445–3453. https://doi.org/10.1021/jf053141z

    Article  CAS  Google Scholar 

  • Singh SK, Rather MA, Mandal SC, Das P, Dar SA (2012) Effects of dietary fish oil substitution with palm oil on growth, survival, and muscle proximate composition of Cirrhinus mrigala (Hamilton, 1822). Isr J Aquac 809:1–8

    Google Scholar 

  • Subsinghe R, Soto D, Jia J (2009) Global aquaculture and its role in sustainable development. Rev Aquac 1:2–9. https://doi.org/10.1111/j.1753-5131.2008.01002.x

    Article  Google Scholar 

  • Sun Y, Neelakantan N, Wu Y, Lote-Oke R, Pan A, Dam RV (2015) Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. J Nutr 145:1549–1558. https://doi.org/10.3945/jn.115.210575

    Article  CAS  PubMed  Google Scholar 

  • Sundram K, Sambanthamurthi R, Tan YA (2003) Palm fruit chemistry and nutrition. Asia Pac J Clin Nutr 12:355–362

    CAS  PubMed  Google Scholar 

  • Tan CP, Man YBC (2000) Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition. J Am Oil Chem Soc 77:143–155

    Article  CAS  Google Scholar 

  • Tavares-Dias M, Moraes FR (2006) Hematological parameters for the Brycon orbignyanus Valenciennes, 1850 (Osteichthyes: Characidae) intensively bred. Hidrobiologica 16:271–274

    Google Scholar 

  • Torstensen BE, Bell JG, Rosenlund G, Henderson RJ, Graff IE, Tocher DR, Lie O, Sargent JR (2005) Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. Agric Food Chem 53:10166–10178. https://doi.org/10.1021/jf051308i

    Article  CAS  Google Scholar 

  • Tseng Y, Lin YH (2020) Effects of dietary supplementation with coconut oil on the growth, fatty acid profiles and some lipid metabolism relative gene expressions of orange-spotted grouper Epinephelus coioides. Aquac Nutr 26:201–210. https://doi.org/10.1111/anu.12981

    Article  CAS  Google Scholar 

  • Turan C (2004) Genetic and morphologic structure of Liza Abu (Heckel, 1843) populations from the Rivers Orontes, Euphrates and Tigris. Turk J Vet Anim Sci 28:729–734

    Google Scholar 

  • Turchini GM, Torstensen BE, Ng WK (2009) Fish oil replacement in finfish nutrition. Rev Aquacult 1:10–57

    Article  Google Scholar 

  • Turchini GM, Francis DS, Senadheera SPSD, Thanuthong T, Silva SSD (2011) Fish oil replacement with different vegetable oils in Murray cod: evidence of an “omega-3 sparing effect” by other dietary fatty acids. Aquaculture 315:250–259. https://doi.org/10.1016/j.aquaculture.2011.02.016

    Article  CAS  Google Scholar 

  • Tyagi VK, Vasishtha AK (1996) Changes in the characteristics and composition of oils during deep-fat frying. J Am Oil Chem Soc 73:499–506. https://doi.org/10.1007/bf02523926

    Article  CAS  Google Scholar 

  • Vincent CJ, Shamsudin R, Baharuddin AS (2014) Pre-treatment of oil palm fruits: a review. J Food Eng 143:123–131. https://doi.org/10.1016/j.jfoodeng.2014.06.022

    Article  CAS  Google Scholar 

  • Wahid MB, Abdullah SNA, Henson IE (2005) Oil palm—achievements and potential. Plant Prod Sci 8:288–297. https://doi.org/10.1626/pps.8.288

    Article  Google Scholar 

  • Wickramanayake D, Kalutharage NK, Cumaranatunga P (2021) Muscle pigmentation of Nile tilapia (Oreochromis niloticus) fed on crude palm oil incorporated fish feed. Sri Lanka J Fish Aquat Sci 26:111–120. https://doi.org/10.4038/sljas.v26i2.7591

    Article  Google Scholar 

  • Wiernsperger NF (2003) Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab 29:579–585

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Ng LT (2007) Antioxidant and antihepatoma activities of palm oil extract. J Food Lipids 14:122–137

    Article  CAS  Google Scholar 

  • Wu S-J, Liu P-L, Ng L-T (2008) Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol Nutr Food Res 53:309. https://doi.org/10.1002/mnfr.200990004

    Article  Google Scholar 

  • Zou Y, Jiang Y, Yang T, Hu P, Xu X (2012) Minor constituents of palm oil: characterization, processing, and application. In: Lai O-M, Tan C-P, Akoh CC (eds) Palm oil: production, processing, characterization and uses. AOCS Press, Urbana, pp 471–524

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abasubong, K.P., Gabriel, N.N., Adjoumani, JJ.Y., Okon, A., Udo, M.T. (2023). The Importance and Utilization of Palm Oil as a Fish Oil Replacement in Aquaculture. In: Gabriel, N.N., Omoregie, E., Abasubong, K.P. (eds) Emerging Sustainable Aquaculture Innovations in Africa. Sustainability Sciences in Asia and Africa(). Springer, Singapore. https://doi.org/10.1007/978-981-19-7451-9_11

Download citation

Publish with us

Policies and ethics

Navigation