Aquaporins in Glandular Secretion

  • Chapter
  • First Online:
Aquaporins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1398))

Abstract

Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner’s glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amano O, Mizobe K, Bando Y, Sakiyama K (2012) Anatomy and histology of rodent and human major salivary glands: -overview of the Japan salivary gland society-sponsored workshop. Acta Histochem Cytochem 45(5):241–250

    Article  PubMed  PubMed Central  Google Scholar 

  2. Young JA, Van Lennep EW (1978) The morphology of salivary glands. Academic Press, London, pp 129–130

    Google Scholar 

  3. Redman RS (1987) Development of salivary glands. In: Sreebny LM (ed) The salivary system. CRC Press, Boca Raton FL, pp 1–20

    Google Scholar 

  4. Lee MG, Ohana E, Park HW, Yang D, Muallem S (2012) Molecular mechanism of pancreatic and salivary gland fluid and HCO3 secretion. Physiol Rev 92(1):39–74

    Article  CAS  PubMed  Google Scholar 

  5. Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  CAS  PubMed  Google Scholar 

  6. Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274(29):20071–20074

    Article  CAS  PubMed  Google Scholar 

  7. Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T et al (2001) Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem 276(26):23413–23420

    Article  CAS  PubMed  Google Scholar 

  8. Maclaren OJ, Sneyd J, Crampin EJ (2013) What do aquaporin knockout studies tell us about fluid transport in epithelia? J Membr Biol 246(4):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sneyd J, Crampin E, Yule D (2014) Multiscale modelling of saliva secretion. Math Biosci 257:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hill AE, Shachar-Hill B (2006) A new approach to epithelial isotonic fluid transport: an osmosensor feedback model. J Membr Biol 210(2):77–90

    Article  CAS  PubMed  Google Scholar 

  11. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell Tissue Res 295(3):513–521

    Article  CAS  PubMed  Google Scholar 

  12. Ishikawa Y, Eguchi T, Skowronski MT, Ishida H (1998) Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem Biophys Res Commun 245(3):835–840

    Article  CAS  PubMed  Google Scholar 

  13. Cho G, Bragiel AM, Wang D, Pieczonka TD, Skowronski MT, Shono M et al (1850) (2015) activation of muscarinic receptors in rat parotid acinar cells induces AQP5 trafficking to nuclei and apical plasma membrane. Biochim Biophys Acta 4:784–793

    Google Scholar 

  14. Wang W, Hart PS, Piesco NP, Lu X, Gorry MC, Hart TC (2003) Aquaporin expression in develo** human teeth and selected orofacial tissues. Calcif Tissue Int 72(3):222–227

    Article  CAS  PubMed  Google Scholar 

  15. Steinfeld S, Cogan E, King LS, Agre P, Kiss R, Delporte C (2001) Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjögren’s syndrome patients. Lab Investig 81(2):143–148

    Article  CAS  PubMed  Google Scholar 

  16. Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem 270(4):1908–1912

    Article  CAS  PubMed  Google Scholar 

  17. Funaki H, Yamamoto T, Koyama Y, Kondo D, Yaoita E, Kawasaki K et al (1998) Localization and expression of AQP5 in cornea, serous salivary glands, and pulmonary epithelial cells. Am J Phys 275(4):C1151–C1157

    CAS  Google Scholar 

  18. Murdiastuti K, Miki O, Yao C, Parvin MN, Kosugi-Tanaka C, Akamatsu T et al (2002) Divergent expression and localization of aquaporin 5, an exocrine-type water channel, in the submandibular gland of Sprague-Dawley rats. Pflugers Arch 445(3):405–412

    Article  PubMed  Google Scholar 

  19. Larsen HS, Aure MH, Peters SB, Larsen M, Messelt EB, Kanli Galtung H (2011) Localization of AQP5 during development of the mouse submandibular salivary gland. J Mol Histol 42(1):71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aure MH, Ruus A-K, Galtung HK (2014) Aquaporins in the adult mouse submandibular and sublingual salivary glands. J Mol Histol 45(1):69–80

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen S, King LS, Christensen BM, Agre P (1997) Aquaporins in complex tissues. II. Subcellular distribution in respiratory and glandular tissues of rat. Am J Phys 273(5):C1549–C1561

    CAS  Google Scholar 

  22. Akamatsu T, Parvin MN, Murdiastuti K, Kosugi-Tanaka C, Yao C, Miki O et al (2003) Expression and localization of aquaporins, members of the water channel family, during development of the rat submandibular gland. Pflugers Arch 446(6):641–651

    Article  CAS  PubMed  Google Scholar 

  23. Mangos JA, McSherry NR (1970) Micropuncture study of urea excretion in parotid saliva of the rat. Am J Phys 218(5):1329–1332

    CAS  Google Scholar 

  24. Murdiastuti K, Purwanti N, Karabasil MR, Li X, Yao C, Akamatsu T et al (2006) A naturally occurring point mutation in the rat aquaporin 5 gene, influencing its protein production by and secretion of water from salivary glands. Am J Physiol Gastrointest Liver Physiol 291(6):G1081–G1088

    Article  CAS  PubMed  Google Scholar 

  25. Verkman AS, Yang B, Song Y, Manley GT, Ma T (2000) Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp Physiol 85(s1):233s–241s

    Article  CAS  PubMed  Google Scholar 

  26. Yang B, Song Y, Zhao D, Verkman AS (2005) Phenotype analysis of aquaporin-8 null mice. Am J Physiol Cell Physiol 288(5):C1161–C1170

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura M, Saga T, Watanabe K, Takahashi N, Tabira Y, Kusukawa J et al (2013) An immunohistochemistry-based study on aquaporin (AQP)-1, 3, 4, 5 and 8 in the parotid glands, submandibular glands and sublingual glands of Sjögren’s syndrome mouse models chronically administered cevimeline. Kurume Med J 60(1):7–19

    Article  CAS  PubMed  Google Scholar 

  28. Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286(3):C529–C537

    Article  CAS  PubMed  Google Scholar 

  29. Beroukas D, Hiscock J, Gannon BJ, Jonsson R, Gordon TP, Waterman SA (2002) Selective down-regulation of aquaporin-1 in salivary glands in primary Sjögren’s syndrome. Lab Investig 82(11):1547–1552

    Article  CAS  PubMed  Google Scholar 

  30. Gresz V, Burghardt B, Ferguson CJ, Hurley PT, Takács M, Nielsen S et al (1999) Expression of aquaporin 1 (AQP1) water channels in human labial salivary glands. Arch Oral Biol 44(Suppl 1):S53–S57

    CAS  PubMed  Google Scholar 

  31. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Phys 265(4 Pt 2):F463–F476

    CAS  Google Scholar 

  32. He X, Tse CM, Donowitz M, Alper SL, Gabriel SE, Baum BJ (1997) Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflugers Arch 433(3):260–268

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Nielsen S, Dai Y, Lazowski KW, Christensen EI, Tabak LA et al (1994) Examination of rat salivary glands for the presence of the aquaporin CHIP. Pflugers Arch 428(5–6):455–460

    Article  CAS  PubMed  Google Scholar 

  34. Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90(15):7275–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. King LS, Nielsen S, Agre P (1997) Aquaporins in complex tissues. I. Developmental patterns in respiratory and glandular tissues of rat. Am J Phys 273(5):C1541–C1548

    CAS  Google Scholar 

  36. Frigeri A, Gropper MA, Turck CW, Verkman AS (1995) Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A 92(10):4328–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuki-Fukushima M, Fujita-Yoshigaki J, Murakami M, Katsumata-Kato O, Yokoyama M, Sugiya H (2013) Involvement of AQP6 in the mercury-sensitive osmotic lysis of rat parotid secretory granules. J Membrane Biol 246(3):209–214

    Article  CAS  Google Scholar 

  38. Wellner RB, Redman RS, Swaim WD, Baum BJ (2006) Further evidence for AQP8 expression in the myoepithelium of rat submandibular and parotid glands. Pflugers Arch - Eur J Physiol 451(5):642–645

    Article  CAS  Google Scholar 

  39. Koyama Y, Yamamoto T, Kondo D, Funaki H, Yaoita E, Kawasaki K et al (1997) Molecular cloning of a new aquaporin from rat pancreas and liver. J Biol Chem 272(48):30329–30333

    Article  CAS  PubMed  Google Scholar 

  40. Elkjær M-L, Nejsum LN, Gresz V, Kwon T-H, Jensen UB, Frøkiær J et al (2001) Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281(6):F1047–F1057

    Article  PubMed  Google Scholar 

  41. Delporte C (2014) Aquaporins in salivary glands and pancreas. Biochim Biophys Acta 1840(5):1524–1532

    Article  CAS  PubMed  Google Scholar 

  42. Larsen HS, Ruus A-K, Galtung HK (2009) Aquaporin expression patterns in the develo** mouse salivary gland. Eur J Oral Sci 117(6):655–662

    Article  CAS  PubMed  Google Scholar 

  43. de Paula F, Tucker AS, Teshima THN, de Souza MM, Coutinho-Camillo CM, Nico MMS et al (2021) Characteristics of aquaporin 1, 3, and 5 expression during early murine salivary gland development. J Anat 238(3):794–806

    Article  PubMed  Google Scholar 

  44. de Paula F, Teshima THN, Hsieh R, Souza MM, Coutinho-Camillo CM, Nico MMS et al (2017) The expression of water channel proteins during human salivary gland development: a topographic study of aquaporins 1, 3 and 5. J Mol Histol 48(5–6):329–336

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hosoi K, Yao C, Hasegawa T, Yoshimura H, Akamatsu T (2020) Dynamics of salivary gland AQP5 under normal and pathologic conditions. Int J Mol Sci 21(4):1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gresz V, Horvath A, Gera I, Nielsen S, Zelles T (2015) Immunolocalization of AQP5 in resting and stimulated normal labial glands and in Sjögren’s syndrome. Oral Dis 21(1):e114–e120

    Article  CAS  PubMed  Google Scholar 

  47. Beroukas D, Hiscock J, Jonsson R, Waterman SA, Gordon TP (2001) Subcellular distribution of aquaporin 5 in salivary glands in primary Sjögren’s syndrome. Lancet 358(9296):1875–1876

    Article  CAS  PubMed  Google Scholar 

  48. Teos LY, Zhang Y, Cotrim AP, Swaim W, Won JH, Ambrus J et al (2015) IP3R deficit underlies loss of salivary fluid secretion in Sjögren’s syndrome. Sci Rep 5:13953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Konttinen YT, Tensing E-K, Laine M, Porola P, Törnwall J, Hukkanen M (2005) Abnormal distribution of aquaporin-5 in salivary glands in the NOD mouse model for Sjögren’s syndrome. J Rheumatol 32(6):1071–1075

    CAS  PubMed  Google Scholar 

  50. Soyfoo MS, De Vriese C, Debaix H, Martin-Martinez MD, Mathieu C, Devuyst O et al (2007) Modified aquaporin 5 expression and distribution in submandibular glands from NOD mice displaying autoimmune exocrinopathy. Arthritis Rheum 56(8):2566–2574

    Article  CAS  PubMed  Google Scholar 

  51. Soyfoo MS, Konno A, Bolaky N, Oak JS, Fruman D, Nicaise C et al (2012) Link between inflammation and aquaporin-5 distribution in submandibular gland in Sjögren’s syndrome? Oral Dis 18(6):568–574

    Article  CAS  PubMed  Google Scholar 

  52. Satoh K, Narita T, Matsuki-Fukushima M, Okabayashi K, Ito T, Senpuku H et al (2013) E2f1-deficient NOD/SCID mice have dry mouth due to a change of acinar/duct structure and the down-regulation of AQP5 in the salivary gland. Pflugers Arch 465(2):271–281

    Article  CAS  PubMed  Google Scholar 

  53. Saito K, Mori S, Kodama T (2021) McH-lpr/lpr-RA1 mice: a novel spontaneous mouse model of autoimmune sialadenitis. Immunol Lett 237:3–10

    Article  CAS  PubMed  Google Scholar 

  54. Lin X, Song J, Shaw P-C, Ng T-B, Wong RN-S, Sze SC-W et al (2011) An autoimmunized mouse model recapitulates key features in the pathogenesis of Sjögren’s syndrome. Int Immunol 23(10):613–624

    Article  CAS  PubMed  Google Scholar 

  55. Limaye A, Hall BE, Zhang L, Cho A, Prochazkova M, Zheng C et al (2019) Targeted TNF-α overexpression drives salivary gland inflammation. J Dent Res 98(6):713–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miyagi Y, Kondo Y, Kusuda Y, Hori Y, Yamazaki S, Munemasa T et al (2019) Submandibular gland-specific inflammaging-induced hyposalivation in the male senescence-accelerated mouse prone-1 line (SAM-P1). Biogerontology 20(4):421–432

    Article  CAS  PubMed  Google Scholar 

  57. Yamamura Y, Motegi K, Kani K, Takano H, Momota Y, Aota K et al (2012) TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation. J Cell Mol Med 16(8):1766–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao C, Purwanti N, Karabasil MR, Azlina A, Javkhlan P, Hasegawa T et al (2010) Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos. Am J Pathol 177(2):724–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee BH, Gauna AE, Perez G, Park Y, Pauley KM, Kawai T et al (2013) Autoantibodies against muscarinic type 3 receptor in Sjögren’s syndrome inhibit aquaporin 5 trafficking. PLoS One 8(1):e53113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li J, Ha Y-M, Kü N-Y, Choi S-Y, Lee SJ, Oh SB et al (2004) Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren’s syndrome. Lab Investig 84(11):1430–1438

    Article  CAS  PubMed  Google Scholar 

  61. Chivasso C, Nesverova V, Järvå M, Blanchard A, Rose KL, Öberg FK et al (2021) Unraveling human AQP5-PIP molecular interaction and effect on AQP5 salivary glands localization in SS patients. Cell 10(8):2108

    Article  CAS  Google Scholar 

  62. Chivasso C, Hagströmer CJ, Rose KL, Lhotellerie F, Leblanc L, Wang Z et al (2021) Ezrin is a novel protein partner of aquaporin-5 in human salivary glands and shows altered expression and cellular localization in Sjögren’s syndrome. Int J Mol Sci 22(17):9213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Törnroth-Horsefield S, Chivasso C, Strandberg H, D’Agostino C, O’Neale CVT, Schey KL, Delporte C (2022) Insight into the mammalian aquaporin interactome. Int J Mol Sci 23(17):9615

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alam J, Koh JH, Kim N, Kwok S-K, Park S-H, Song YW et al (2016) Detection of autoantibodies against aquaporin-5 in the sera of patients with primary Sjögren’s syndrome. Immunol Res 64(4):848–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tzartos JS, Stergiou C, Daoussis D, Zisimopoulou P, Andonopoulos AP, Zolota V et al (2017) Antibodies to aquaporins are frequent in patients with primary Sjögren’s syndrome. Rheumatology (Oxford) 56(12):2114–2122

    Article  CAS  PubMed  Google Scholar 

  66. Ring T, Kallenbach M, Praetorius J, Nielsen S, Melgaard B (2006) Successful treatment of a patient with primary Sjögren’s syndrome with rituximab. Clin Rheumatol 25(6):891–894

    Article  PubMed  Google Scholar 

  67. Alam J, Choi YS, Koh JH, Kwok S-K, Park S-H, Song YW et al (2017) Detection of autoantibodies against aquaporin-1 in the sera of patients with primary Sjögren’s syndrome. Immune Netw 17(2):103–109

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sisto M, Lorusso L, Ingravallo G, Nico B, Ribatti D, Ruggieri S et al (2017) Abnormal distribution of AQP4 in minor salivary glands of primary Sjögren’s syndrome patients. Autoimmunity 50(4):202–210

    Article  CAS  PubMed  Google Scholar 

  69. Takagi K, Yamaguchi K, Sakurai T, Asari T, Hashimoto K, Terakawa S (2003) Secretion of saliva in X-irradiated rat submandibular glands. Radiat Res 159(3):351–360

    Article  CAS  PubMed  Google Scholar 

  70. Choi JH, Wu H-G, Jung KC, Lee SH, Kwon EK (2009) Apoptosis and expression of AQP5 and TGF-beta in the irradiated rat submandibular gland. Cancer Res Treat 41(3):145–154

    Article  PubMed  PubMed Central  Google Scholar 

  71. Asari T, Maruyama K, Kusama H (2009) Salivation triggered by pilocarpine involves aquaporin-5 in normal rats but not in irradiated rats. Clin Exp Pharmacol Physiol 36(5–6):531–538

    Article  CAS  PubMed  Google Scholar 

  72. Kim JH, Jeong BK, Jang SJ, Yun JW, Jung MH, Kang KM et al (2020) Alpha-lipoic acid ameliorates radiation-induced salivary gland injury by preserving parasympathetic innervation in rats. Int J Mol Sci 21(7):2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Araujo MVT, Spadella MA, Chies AB, Arruda GV, Santos TM, Cavariani MM et al (2018) Effect of low radiation dose on the expression and location of aquaporins in rat submandibular gland. Tissue Cell 53:104–110

    Article  CAS  PubMed  Google Scholar 

  74. Takakura K, Takaki S, Takeda I, Hanaue N, Kizu Y, Tonogi M et al (2007) Effect of cevimeline on radiation-induced salivary gland dysfunction and AQP5 in submandibular gland in mice. Bull Tokyo Dent Coll 48(2):47–56

    Article  CAS  PubMed  Google Scholar 

  75. Li Z, Zhao D, Gong B, Xu Y, Sun H, Yang B et al (2006) Decreased saliva secretion and down-regulation of AQP5 in submandibular gland in irradiated rats. Radiat Res 165(6):678–687

    Article  CAS  PubMed  Google Scholar 

  76. Wu Y-H, Xu H, Yao Q-T, Liu S-H, Yakupu A, Lu L-D et al (2021) Effect of ionizing radiation on the secretion of the paracellular pathway in rat submandibular glands. Hua ** Kou Qiang Yi Xue Za Zhi 39(3):267–273

    PubMed  Google Scholar 

  77. Yao Q-T, Wu Y-H, Liu S-H, Song X-B, Xu H, Li J et al (2021) Pilocarpine improves submandibular gland dysfunction in irradiated rats by downregulating the tight junction protein claudin-4. Oral Dis 28(6):1528–1538

    Article  PubMed  Google Scholar 

  78. Biswas R, Ahn JC, Moon JH, Kim J, Choi Y-H, Park SY et al (2018) Low-level laser therapy with 850 nm recovers salivary function via membrane redistribution of aquaporin 5 by reducing intracellular Ca2+ overload and ER stress during hyperglycemia. Biochim Biophys Acta Gen Subj 1862(8):1770–1780

    Article  CAS  PubMed  Google Scholar 

  79. Soyfoo MS, Bolaky N, Depoortere I, Delporte C (2012) Relationship between aquaporin-5 expression and saliva flow in streptozotocin-induced diabetic mice? Oral Dis 18(5):501–505

    Article  CAS  PubMed  Google Scholar 

  80. Cui F, Hu M, Li R, Li B, Huang D, Ma W et al (2021) Insulin on changes in expressions of aquaporin-1, aquaporin-5, and aquaporin-8 in submandibular salivary glands of rats with Streptozotocin-induced diabetes. Int J Clin Exp Pathol 14(2):221–229

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang D, Yuan Z, Inoue N, Cho G, Shono M, Ishikawa Y (2011) Abnormal subcellular localization of AQP5 and downregulated AQP5 protein in parotid glands of streptozotocin-induced diabetic rats. Biochim Biophys Acta 1810(5):543–554

    Article  CAS  PubMed  Google Scholar 

  82. Inoue N, Iida H, Yuan Z, Ishikawa Y, Ishida H (2003) Age-related decreases in the response of aquaporin-5 to acetylcholine in rat parotid glands. J Dent Res 82(6):476–480

    Article  CAS  PubMed  Google Scholar 

  83. Ishikawa Y, Iida H, Ishida H (2002) The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction. Mol Pharmacol 61(6):1423–1434

    Article  CAS  PubMed  Google Scholar 

  84. Wu F, Wang J, Sun J, Shen L, Liu M, Zhao E (2018) Procaine stimulates aquaporin-5 expression in human salivary gland ductal cells via the suppression of DNA methyltransferase-1. Mol Med Rep 17(6):7996–8002

    CAS  PubMed  Google Scholar 

  85. Zeng M, Szymczak M, Ahuja M, Zheng C, Yin H, Swaim W et al (2017) Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice. Gastroenterology 153(4):1148–1159

    Article  CAS  PubMed  Google Scholar 

  86. Delporte C, O’Connell BC, He X, Lancaster HE, O’Connell AC, Agre P et al (1997) Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A 94(7):3268–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baum BJ, Zheng C, Cotrim AP, Goldsmith CM, Atkinson JC, Brahim JS et al (2006) Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. Biochim Biophys Acta 1758(8):1071–1077

    Article  CAS  PubMed  Google Scholar 

  88. Shan Z, Li J, Zheng C, Liu X, Fan Z, Zhang C et al (2005) Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther 11(3):444–451

    Article  CAS  PubMed  Google Scholar 

  89. O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H et al (1999) Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther 6(6):505–513

    Article  PubMed  Google Scholar 

  90. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L et al (2012) Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A 109(47):19403–19407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lai Z, Yin H, Cabrera-Pérez J, Guimaro MC, Afione S, Michael DG et al (2016) Aquaporin gene therapy corrects Sjögren’s syndrome phenotype in mice. Proc Natl Acad Sci U S A 113(20):5694–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang S-Q, Wang Y-X, Hua H (2017) Characteristics of labial gland mesenchymal stem cells of healthy individuals and patients with Sjögren’s syndrome: a preliminary study. Stem Cells Dev 26(16):1171–1185

    Article  CAS  PubMed  Google Scholar 

  93. Koelz HR (1992) Gastric acid in vertebrates. Scand J Gastroenterol Suppl 193:2–6

    Article  CAS  PubMed  Google Scholar 

  94. Zhu C, Chen Z, Jiang Z (2016) Expression, distribution and role of aquaporin water channels in human and animal stomach and intestines. Int J Mol Sci 17(9):E1399

    Article  Google Scholar 

  95. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  96. Laforenza U (2012) Water channel proteins in the gastrointestinal tract. Mol Asp Med 33(5–6):642–650

    Article  CAS  Google Scholar 

  97. Koyama Y, Yamamoto T, Tani T, Nihei K, Kondo D, Funaki H et al (1999) Expression and localization of aquaporins in rat gastrointestinal tract. Am J Phys 276(3):C621–C627

    CAS  Google Scholar 

  98. Huang Y, Tola VB, Fang P, Soybel DI, Van Hoek AN (2003) Partitioning of aquaporin-4 water channel mRNA and protein in gastric glands. Dig Dis Sci 48(10):2027–2036

    Article  CAS  PubMed  Google Scholar 

  99. Fujita A, Horio Y, Nielsen S, Nagelhus EA, Hata F, Ottersen OP et al (1999) High-resolution immunogold cytochemistry indicates that AQP4 is concentrated along the basal membrane of parietal cell in rat stomach. FEBS Lett 459(3):305–309

    Article  CAS  PubMed  Google Scholar 

  100. Misaka T, Abe K, Iwabuchi K, Kusakabe Y, Ichinose M, Miki K et al (1996) A water channel closely related to rat brain aquaporin 4 is expressed in acid- and pepsinogen-secretory cells of human stomach. FEBS Lett 381(3):208–212

    Article  CAS  PubMed  Google Scholar 

  101. Carmosino M, Procino G, Tamma G, Mannucci R, Svelto M, Valenti G (2007) Trafficking and phosphorylation dynamics of AQP4 in histamine-treated human gastric cells. Biol Cell 99(1):25–36

    Article  CAS  PubMed  Google Scholar 

  102. Wang KS, Komar AR, Ma T, Filiz F, McLeroy J, Hoda K et al (2000) Gastric acid secretion in aquaporin-4 knockout mice. Am J Physiol Gastrointest Liver Physiol 279(2):G448–G453

    Article  CAS  PubMed  Google Scholar 

  103. Parvin MN, Tsumura K, Akamatsu T, Kanamori N, Hosoi K (2002) Expression and localization of AQP5 in the stomach and duodenum of the rat. Biochim Biophys Acta 1542(1–3):116–124

    Article  CAS  PubMed  Google Scholar 

  104. Huang Y-H, Zhou X-Y, Wang H-M, Xu H, Chen J, Lv N-H (2013) Aquaporin 5 promotes the proliferation and migration of human gastric carcinoma cells. Tumour Biol 34(3):1743–1751

    Article  CAS  PubMed  Google Scholar 

  105. Shen L, Zhu Z, Huang Y, Shu Y, Sun M, Xu H et al (2010) Expression profile of multiple aquaporins in human gastric carcinoma and its clinical significance. Biomed Pharmacother 64(5):313–318

    Article  CAS  PubMed  Google Scholar 

  106. Chen J, Wang T, Zhou Y-C, Gao F, Zhang Z-H, Xu H et al (2014) Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res 33:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lastraioli E, Iorio J, Arcangeli A (2015) Ion channel expression as promising cancer biomarker. Biochim Biophys Acta 1848(10 Pt B):2685–2702

    Article  CAS  PubMed  Google Scholar 

  108. Zhou Y, Wang Y, Wang S, Shen L (2015) Hyperglycemia promotes human gastric carcinoma progression via aquaporin 3. Dig Dis Sci 60(8):2338–2345

    Article  CAS  PubMed  Google Scholar 

  109. Thapa S, Chetry M, Huang K, Peng Y, Wang J, Wang J et al (2018) Significance of aquaporins’ expression in the prognosis of gastric cancer. Biosci Rep 38(3):BSR20171687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shiozaki A, Marunaka Y, Otsuji E (2021) Roles of ion and water channels in the cell death and survival of upper gastrointestinal tract cancers. Front Cell Dev Biol 9:616933

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang Z, Wang Y, He Y, Zhang N, Chang W, Niu Y (2020) Aquaporin-1 facilitates proliferation and invasion of gastric cancer cells via GRB7-mediated ERK and Ras activation. Anim Cells Syst (Seoul) 24(5):253–259

    Article  CAS  PubMed  Google Scholar 

  112. Moosavi M-S, Elham Y (2019) Aquaporins 1, 3 and 5 in different tumors, their expression, prognosis value and role as new therapeutic targets. Pathol Oncol Res 26(2):615–625

    Article  PubMed  Google Scholar 

  113. Ying W, Zheng K, Wu Y, Wang O (2021) Pannexin 1 mediates gastric cancer cell epithelial-mesenchymal transition via aquaporin 5. Biol Pharm Bull 44(8):1111–1119

    Article  CAS  PubMed  Google Scholar 

  114. Jiang B, Li Z, Zhang W, Wang H, Zhi X, Feng J et al (2014) miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol 49(6):1011–1025

    Article  CAS  PubMed  Google Scholar 

  115. Zhu H, Wu Y, Kang M, Zhang B (2020) MiR-877 suppresses gastric cancer progression by downregulating AQP3. J Int Med Res 48(6):300060520903661

    Article  CAS  PubMed  Google Scholar 

  116. Li N, Xu X, Yang H, Wang H, Ouyang Y, Zhou Y et al (2021) Activation of aquaporin 5 by carcinogenic helicobacter pylori infection promotes epithelial-mesenchymal transition via the MEK/ERK pathway. Helicobacter 26(5):e12842

    Article  CAS  PubMed  Google Scholar 

  117. Wen J, Wang Y, Gao C, Zhang G, You Q, Zhang W et al (2018) Helicobacter pylori infection promotes aquaporin 3 expression via the ROS-HIF-1α-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis. Oncogene 37(26):3549–3561

    Article  CAS  PubMed  Google Scholar 

  118. Liu G, Wang Z, Li X, Liu R, Li B, Huang L et al (2020) Total glucosides of paeony (TGP) alleviates constipation and intestinal inflammation in mice induced by Sjögren’s syndrome. J Ethnopharmacol 260:113056

    Article  CAS  PubMed  Google Scholar 

  119. **a J, Wang H, Li S, Wu Q, Sun L, Huang H et al (2017) Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer 16(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  120. Parvin MN, Kurabuchi S, Murdiastuti K, Yao C, Kosugi-Tanaka C, Akamatsu T et al (2005) Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner’s gland of the rat duodenum. Am J Physiol Gastrointest Liver Physiol 288(6):G1283–G1291

    Article  CAS  PubMed  Google Scholar 

  121. Kirkegaard P, Lundberg JM, Poulsen SS, Olsen PS, Fahrenkrug J, Hökfelt T et al (1981) Vasoactive intestinal polypeptidergic nerves and Brunner’s gland secretion in the rat. Gastroenterology 81(5):872–878

    Article  CAS  PubMed  Google Scholar 

  122. Collaco AM, Jakab RL, Hoekstra NE, Mitchell KA, Brooks A, Ameen NA (2013) Regulated traffic of anion transporters in mammalian Brunner’s glands: a role for water and fluid transport. Am J Physiol Gastrointest Liver Physiol 305(3):G258–G275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Portincasa P, Palasciano G, Svelto M, Calamita G (2008) Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. Eur J Clin Investig 38(1):1–10

    Article  CAS  Google Scholar 

  124. Boyer JL (2013) Bile formation and secretion. Compr Physiol 3(3):1035–1078

    Article  PubMed  PubMed Central  Google Scholar 

  125. Masyuk T, LaRusso N (2006) Polycystic liver disease: new insights into disease pathogenesis. Hepatology 43(5):906–908

    Article  CAS  PubMed  Google Scholar 

  126. Müller M, Jansen PL (1997) Molecular aspects of hepatobiliary transport. Am J Phys 272(6 Pt 1):G1285–G1303

    Google Scholar 

  127. Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517(Pt 2):317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vlahcevic ZR, Jairath SK, Heuman DM, Stravitz RT, Hylemon PB, Avadhani NG et al (1996) Transcriptional regulation of hepatic sterol 27-hydroxylase by bile acids. Am J Phys 270(4 Pt 1):G646–G652

    CAS  Google Scholar 

  129. Sherlock S, Dooley J (2002) Diseases of the liver and biliary system. Wiley

    Google Scholar 

  130. Gregoire F, Lucidi V, Zerrad-Saadi A, Virreira M, Bolaky N, Delforge V et al (2015) Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem Cell Biol 144(4):347–363

    Article  CAS  PubMed  Google Scholar 

  131. Hung K-C, Hsieh P-M, Hsu C-Y, Lin C-W, Feng G-M, Chen Y-S et al (2012) Expression of aquaporins in rat liver regeneration. Scand J Gastroenterol 47(6):676–685

    Article  CAS  PubMed  Google Scholar 

  132. Tardelli M, Moreno-Viedma V, Zeyda M, Itariu BK, Langer FB, Prager G et al (2017) Adiponectin regulates aquaglyceroporin expression in hepatic stellate cells altering their functional state. J Gastroenterol Hepatol 32(1):253–260

    Article  CAS  PubMed  Google Scholar 

  133. Jia Y, Yao H, Zhou J, Chen L, Zeng Q, Yuan H et al (2011) Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ. J Cell Physiol 226(11):2807–2816

    Article  CAS  PubMed  Google Scholar 

  134. Lakner AM, Walling TL, McKillop IH, Schrum LW (2011) Altered aquaporin expression and role in apoptosis during hepatic stellate cell activation. Liver Int 31(1):42–51

    Article  CAS  PubMed  Google Scholar 

  135. Lee PJ, Park H-J, Cho N, Kim HP (2018) Aquaporin 11-dependent inhibition of proliferation by deuterium oxide in activated hepatic stellate cells. Molecules 23(12):E3209

    Article  Google Scholar 

  136. Yovchev MI, Grozdanov PN, Zhou H, Racherla H, Guha C, Dabeva MD (2008) Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology 47(2):636–647

    Article  CAS  PubMed  Google Scholar 

  137. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M et al (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276(3):1118–1128

    Article  CAS  PubMed  Google Scholar 

  138. Calamita G, Ferri D, Bazzini C, Mazzone A, Bottà G, Liquori GE et al (2005) Expression and subcellular localization of the AQP8 and AQP1 water channels in the mouse gall-bladder epithelium. Biol Cell 97(6):415–423

    Article  CAS  PubMed  Google Scholar 

  139. Ferri D, Mazzone A, Liquori GE, Cassano G, Svelto M, Calamita G (2003) Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology 38(4):947–957

    Article  CAS  PubMed  Google Scholar 

  140. Nihei K, Koyama Y, Tani T, Yaoita E, Ohshiro K, Adhikary LP et al (2001) Immunolocalization of aquaporin-9 in rat hepatocytes and Leydig cells. Arch Histol Cytol 64(1):81–88

    Article  CAS  PubMed  Google Scholar 

  141. Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A et al (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25(17):7770–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D et al (2001) Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. Eur J Cell Biol 80(11):711–719

    Article  CAS  PubMed  Google Scholar 

  143. Portincasa P, Calamita G (2012) Water channel proteins in bile formation and flow in health and disease: when immiscible becomes miscible. Mol Asp Med 33(5–6):651–664

    Article  CAS  Google Scholar 

  144. Huebert RC, Splinter PL, Garcia F, Marinelli RA, LaRusso NF (2002) Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J Biol Chem 277(25):22710–22717

    Article  CAS  PubMed  Google Scholar 

  145. Calamita G, Gena P, Meleleo D, Ferri D, Svelto M (2006) Water permeability of rat liver mitochondria: a biophysical study. Biochim Biophys Acta 1758(8):1018–1024

    Article  CAS  PubMed  Google Scholar 

  146. Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393(2):217–221

    Article  CAS  PubMed  Google Scholar 

  147. Capiglioni AM, Müller GL, Marrone J, Alvarez ML, Marinelli RA (2021) Enhanced ammonia detoxification to urea in hepatocytes transduced with human aquaporin-8 gene. Biotechnol Bioeng 118(11):4331–4337

    Article  CAS  PubMed  Google Scholar 

  148. Marchissio MJ, Francés DEA, Carnovale CE, Marinelli RA (2012) Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol 264(2):246–254

    Article  CAS  PubMed  Google Scholar 

  149. Marinelli RA, Marchissio MJ (2013) Mitochondrial aquaporin-8: a functional peroxiporin? Antioxid Redox Signal 19(8):896

    Article  CAS  PubMed  Google Scholar 

  150. Danielli M, Capiglioni AM, Marrone J, Calamita G, Marinelli RA (2017) Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells. IUBMB Life 69(5):341–346

    Article  CAS  PubMed  Google Scholar 

  151. Danielli M, Marrone J, Capiglioni AM, Marinelli RA (2019) Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis. Free Radic Biol Med 131:370–375

    Article  CAS  PubMed  Google Scholar 

  152. Danielli M, Capiglioni AM, Marrone J, Marinelli RA (2021) Further evidence for the involvement of mitochondrial aquaporin-8 in hepatocyte lipid synthesis. Biochimie 188:16–19

    Article  CAS  PubMed  Google Scholar 

  153. Vilchis-Landeros M, Guinzberg R, Riveros-Rosas H, Villalobos-Molina R, Piña E (2020) Aquaporin 8 is involved in H2 O2 -mediated differential regulation of metabolic signaling by α1 - and β-adrenoceptors in hepatocytes. FEBS Lett 594(10):1564–1576

    Article  PubMed  Google Scholar 

  154. Gradilone SA, Carreras FI, Lehmann GL, Marinelli RA (2005) Phosphoinositide 3-kinase is involved in the glucagon-induced translocation of aquaporin-8 to hepatocyte plasma membrane. Biol Cell 97(11):831–836

    Article  CAS  PubMed  Google Scholar 

  155. García F, Kierbel A, Larocca MC, Gradilone SA, Splinter P, LaRusso NF et al (2001) The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J Biol Chem 276(15):12147–12152

    Article  PubMed  Google Scholar 

  156. Gradilone SA, García F, Huebert RC, Tietz PS, Larocca MC, Kierbel A et al (2003) Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology 37(6):1435–1441

    Article  CAS  PubMed  Google Scholar 

  157. Soria LR, Gradilone SA, Larocca MC, Marinelli RA (2009) Glucagon induces the gene expression of aquaporin-8 but not that of aquaporin-9 water channels in the rat hepatocyte. Am J Physiol Regul Integr Comp Physiol 296(4):R1274–R1281

    Article  CAS  PubMed  Google Scholar 

  158. Carreras FI, Lehmann GL, Ferri D, Tioni MF, Calamita G, Marinelli RA (2007) Defective hepatocyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis. Am J Physiol Gastrointest Liver Physiol 292(3):G905–G912

    Article  CAS  PubMed  Google Scholar 

  159. Calamita G, Gena P, Ferri D, Rosito A, Rojek A, Nielsen S et al (2012) Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol Cell 104(6):342–351

    Article  CAS  PubMed  Google Scholar 

  160. Jelen S, Wacker S, Aponte-Santamaría C, Skott M, Rojek A, Johanson U et al (2011) Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J Biol Chem 286(52):44319–44325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gena P, Buono ND, D’Abbicco M, Mastrodonato M, Berardi M, Svelto M et al (2017) Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. Eur J Cell Biol 96(1):61–69

    Article  CAS  PubMed  Google Scholar 

  162. Rodríguez A, Catalán V, Gómez-Ambrosi J, García-Navarro S, Rotellar F, Valentí V et al (2011) Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J Clin Endocrinol Metab 96(4):E586–E597

    Article  PubMed  Google Scholar 

  163. Calamita G, Ferri D, Gena P, Carreras FI, Liquori GE, Portincasa P et al (2008) Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am J Physiol Gastrointest Liver Physiol 295(4):G682–G690

    Article  CAS  PubMed  Google Scholar 

  164. Jelen S, Gena P, Lebeck J, Rojek A, Praetorius J, Frøkiaer J et al (2012) Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol 303(11):G1279–G1287

    Article  CAS  PubMed  Google Scholar 

  165. Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H et al (2002) Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51(10):2915–2921

    Article  CAS  PubMed  Google Scholar 

  166. Carbrey JM, Gorelick-Feldman DA, Kozono D, Praetorius J, Nielsen S, Agre P (2003) Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc Natl Acad Sci U S A 100(5):2945–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Calamita G, Delporte C, Marinelli PA (2015) Hepatobiliary, salivary glands and pancreatic aquaporins in health and disease. In: Soveral G, Nielsen S, Casini A (eds) Aquaporins in heath and disease: new molecular targets for drug discovery. CRC Press, pp 183–205

    Google Scholar 

  168. Rojek AM, Skowronski MT, Füchtbauer E-M, Füchtbauer AC, Fenton RA, Agre P et al (2007) Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci U S A 104(9):3609–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gena P, Mastrodonato M, Portincasa P, Fanelli E, Mentino D, Rodríguez A et al (2013) Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of non-alcoholic fatty liver disease. PLoS One 8(10):e78139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rodríguez A, Gena P, Méndez-Giménez L, Rosito A, Valentí V, Rotellar F et al (2014) Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int J Obes 38(9):1213–1220

    Article  Google Scholar 

  171. Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G (2015) Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 309(8):E691–E714

    Article  PubMed  Google Scholar 

  172. Mohammad S, O’Riordan CE, Verra C, Aimaretti E, Alves GF, Dreisch K, Evenäs J, Gena P, Tesse A, Rützler M, Collino M, Calamita G, Thiemermann C (2022) RG100204, a novel aquaporin-9 inhibitor, reduces septic cardiomyopathy and multiple organ failure in murine sepsis. Front Immunol 13:900906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Florio M, Engfors A, Gena P, Larsson J, Massaro A, Timpka S, Reimer MK, Kjellbom P, Beitz E, Johanson U, Rützler M, Calamita G (2022) Characterization of the aquaporin-9 inhibitor RG100204 in vitro and in db/db mice. Cells 11(19):3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. da Silva IV, Garra S, Calamita G, Soveral G (2022) The multifaceted role of aquaporin-9 in health and its potential as a clinical biomarker. Biomolecules 12(7):897

    Article  PubMed  PubMed Central  Google Scholar 

  175. Baldini F, Portincasa P, Grasselli E, Damonte G, Salis A, Bonomo M et al (2020) Aquaporin-9 is involved in the lipid-lowering activity of the nutraceutical silybin on hepatocytes through modulation of autophagy and lipid droplets composition. Biochim Biophys Acta Mol Cell Biol Lipids 1865(3):158586

    Article  CAS  PubMed  Google Scholar 

  176. Tesse A, Gena P, Rützler M, Calamita G (2021) Ablation of aquaporin-9 ameliorates the systemic inflammatory response of LPS-induced endotoxic shock in mouse. Cell 10(2):435

    Article  CAS  Google Scholar 

  177. Ishibashi K, Tanaka Y, Morishita Y (2021) The role of mammalian superaquaporins inside the cell: an update. Biochim Biophys Acta Biomembr 1863(7):183617

    Article  CAS  PubMed  Google Scholar 

  178. Marinelli RA, LaRusso NF (1997) Aquaporin water channels in liver: their significance in bile formation. Hepatology 26(5):1081–1084

    Article  CAS  PubMed  Google Scholar 

  179. Marinelli RA, Lehmann GL, Soria LR, Marchissio MJ (2011) Hepatocyte aquaporins in bile formation and cholestasis. Front Biosci (Landmark Ed) 16:2642–2652

    Article  CAS  PubMed  Google Scholar 

  180. Marinelli RA, Tietz PS, Pham LD, Rueckert L, Agre P, LaRusso NF (1999) Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am J Phys 276(1):G280–G286

    CAS  Google Scholar 

  181. Tietz PS, Marinelli RA, Chen X-M, Huang B, Cohn J, Kole J et al (2003) Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J Biol Chem 278(22):20413–20419

    Article  CAS  PubMed  Google Scholar 

  182. Marinelli RA, Pham LD, Tietz PS, LaRusso NF (2000) Expression of aquaporin-4 water channels in rat cholangiocytes. Hepatology 31(6):1313–1317

    Article  CAS  PubMed  Google Scholar 

  183. Calamita G, Ferri D, Gena P, Liquori GE, Marinelli RA, Meyer G et al (2005) Water transport into bile and role in bile formation. Curr Drug Targets Immune Endocr Metabol Disord 5(2):137–142

    Article  CAS  PubMed  Google Scholar 

  184. Mennone A, Verkman AS, Boyer JL (2002) Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice. Am J Physiol Gastrointest Liver Physiol 283(3):G739–G746

    Article  CAS  PubMed  Google Scholar 

  185. Ueno Y, Alpini G, Yahagi K, Kanno N, Moritoki Y, Fukushima K et al (2003) Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int 23(6):449–459

    Article  CAS  PubMed  Google Scholar 

  186. Poling HM, Mohanty SK, Tiao GM, Huppert SS (2014) A comprehensive analysis of aquaporin and secretory related gene expression in neonate and adult cholangiocytes. Gene Expr Patterns 15(2):96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Masyuk AI, Masyuk TV, Tietz PS, Splinter PL, LaRusso NF (2002) Intrahepatic bile ducts transport water in response to absorbed glucose. Am J Physiol Cell Physiol 283(3):C785–C791

    Article  CAS  PubMed  Google Scholar 

  188. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D et al (2005) The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 280(17):17149–17153

    Article  CAS  PubMed  Google Scholar 

  189. Ambe PC, Gödde D, Zirngibl H, Störkel S (2016) Aquaporin-1 and 8 expression in the gallbladder mucosa might not be associated with the development of gallbladder stones in humans. Eur J Clin Investig 46(3):227–233

    Article  CAS  Google Scholar 

  190. van Erpecum KJ, Wang DQ-H, Moschetta A, Ferri D, Svelto M, Portincasa P et al (2006) Gallbladder histopathology during murine gallstone formation: relation to motility and concentrating function. J Lipid Res 47(1):32–41

    Article  PubMed  Google Scholar 

  191. Swartz-Basile DA, Lu D, Basile DP, Graewin SJ, Al-Azzawi H, Kiely JM et al (2007) Leptin regulates gallbladder genes related to absorption and secretion. Am J Physiol Gastrointest Liver Physiol 293(1):G84–G90

    Article  CAS  PubMed  Google Scholar 

  192. Sweed N, Kim H-J, Hultenby K, Barros R, Parini P, Sancisi V et al (2021) Liver X receptor β regulates bile volume and the expression of aquaporins and cystic fibrosis transmembrane conductance regulator in the gallbladder. Am J Physiol Gastrointest Liver Physiol 321(4):G243–G251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li L, Zhang H, Ma T, Verkman AS (2009) Very high aquaporin-1 facilitated water permeability in mouse gallbladder. Am J Physiol Gastrointest Liver Physiol 296(4):G816–G822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Goldblatt MI, Swartz-Basile DA, Svatek CL, Nakeeb A, Pitt HA (2002) Decreased gallbladder response in leptin-deficient obese mice. J Gastrointest Surg 6(3):438–442; discussion 443–444.

    Article  PubMed  Google Scholar 

  195. Okada S, Misaka T, Matsumoto I, Watanabe H, Abe K (2003) Aquaporin-9 is expressed in a mucus-secreting goblet cell subset in the small intestine. FEBS Lett 540(1–3):157–162

    Article  CAS  PubMed  Google Scholar 

  196. Konturek SJ, Zabielski R, Konturek JW, Czarnecki J (2003) Neuroendocrinology of the pancreas; role of brain-gut axis in pancreatic secretion. Eur J Pharmacol 481(1):1–14

    Article  CAS  PubMed  Google Scholar 

  197. Burghardt B, Elkaer M-L, Kwon T-H, Rácz GZ, Varga G, Steward MC et al (2003) Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut 52(7):1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Isokpehi RD, Rajnarayanan RV, Jeffries CD, Oyeleye TO, Cohly HHP (2009) Integrative sequence and tissue expression profiling of chicken and mammalian aquaporins. BMC Genomics 10(Suppl 2):S7

    Article  PubMed  PubMed Central  Google Scholar 

  199. Cho S-J, Sattar AKMA, Jeong E-H, Satchi M, Cho JA, Dash S et al (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci U S A 99(7):4720–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Abu-Hamdah R, Cho W-J, Cho S-J, Jeremic A, Kelly M, Ilie AE et al (2004) Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol Int 28(1):7–17

    Article  CAS  PubMed  Google Scholar 

  201. Hurley PT, Ferguson CJ, Kwon TH, Andersen ML, Norman AG, Steward MC et al (2001) Expression and immunolocalization of aquaporin water channels in rat exocrine pancreas. Am J Physiol Gastrointest Liver Physiol 280(4):G701–G709

    Article  CAS  PubMed  Google Scholar 

  202. Furuya S, Naruse S, Ko SBH, Ishiguro H, Yoshikawa T, Hayakawa T (2002) Distribution of aquaporin 1 in the rat pancreatic duct system examined with light- and electron-microscopic immunohistochemistry. Cell Tissue Res 308(1):75–86

    Article  CAS  PubMed  Google Scholar 

  203. Ko SBH, Naruse S, Kitagawa M, Ishiguro H, Furuya S, Mizuno N et al (2002) Aquaporins in rat pancreatic interlobular ducts. Am J Physiol Gastrointest Liver Physiol 282(2):G324–G331

    Article  CAS  PubMed  Google Scholar 

  204. Burghardt B, Nielsen S, Steward MC (2006) The role of aquaporin water channels in fluid secretion by the exocrine pancreas. J Membr Biol 210(2):143–153

    Article  CAS  PubMed  Google Scholar 

  205. Itoh T, Rai T, Kuwahara M, Ko SBH, Uchida S, Sasaki S et al (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330(3):832–838

    Article  CAS  PubMed  Google Scholar 

  206. McManaman JL, Reyland ME, Thrower EC (2006) Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia 11(3–4):249–268

    Article  PubMed  Google Scholar 

  207. Langerhans P (1869) Beiträge zur mikroscopischen anatomie der bauchspeichel druse, Inaugural-dissertation. Gustav Lange, Berlin

    Google Scholar 

  208. Henquin JC (2009) Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 52(5):739–751

    Article  CAS  PubMed  Google Scholar 

  209. Sener A, Malaisse WJ (2002) The stimulus-secretion coupling of amino acid-induced insulin release. Insulinotropic action of L-alanine. Biochim Biophys Acta 1573(1):100–104

    Article  CAS  PubMed  Google Scholar 

  210. Miley HE, Sheader EA, Brown PD, Best L (1997) Glucose-induced swelling in rat pancreatic beta-cells. J Physiol Lond 504(Pt 1):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Best L, Miley HE, Yates AP (1996) Activation of an anion conductance and beta-cell depolarization during hypotonically induced insulin release. Exp Physiol 81(6):927–933

    Article  CAS  PubMed  Google Scholar 

  212. Drews G, Krippeit-Drews P, Düfer M (2010) Electrophysiology of islet cells. Adv Exp Med Biol 654:115–163

    Article  CAS  PubMed  Google Scholar 

  213. Best L, Brown PD, Yates AP, Perret J, Virreira M, Beauwens R et al (2009) Contrasting effects of glycerol and urea transport on rat pancreatic beta-cell function. Cell Physiol Biochem 23(4–6):255–264

    Article  CAS  PubMed  Google Scholar 

  214. Louchami K, Best L, Brown P, Virreira M, Hupkens E, Perret J et al (2012) A new role for aquaporin 7 in insulin secretion. Cell Physiol Biochem 29(1–2):65–74

    Article  CAS  PubMed  Google Scholar 

  215. Matsumura K, Chang BH-J, Fujimiya M, Chen W, Kulkarni RN, Eguchi Y et al (2007) Aquaporin 7 is a beta-cell protein and regulator of intraislet glycerol content and glycerol kinase activity, beta-cell mass, and insulin production and secretion. Mol Cell Biol 27(17):6026–6037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hibuse T, Maeda N, Funahashi T, Yamamoto K, Nagasawa A, Mizunoya W et al (2005) Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase. Proc Natl Acad Sci U S A 102(31):10993–10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Skowronski MT, Lebeck J, Rojek A, Praetorius J, Füchtbauer E-M, Frøkiaer J et al (2007) AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am J Physiol Renal Physiol 292(3):F956–F965

    Article  CAS  PubMed  Google Scholar 

  218. Delporte C, Virreira M, Crutzen R, Louchami K, Sener A, Malaisse WJ et al (2009) Functional role of aquaglyceroporin 7 expression in the pancreatic beta-cell line BRIN-BD11. J Cell Physiol 221(2):424–429

    Article  CAS  PubMed  Google Scholar 

  219. Virreira M, Perret J, Delporte C (2011) Pancreatic beta-cells: role of glycerol and aquaglyceroporin 7. Int J Biochem Cell Biol 43(1):10–13

    Article  CAS  PubMed  Google Scholar 

  220. Kondo H, Shimomura I, Kishida K, Kuriyama H, Makino Y, Nishizawa H et al (2002) Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur J Biochem 269(7):1814–1826

    Article  CAS  PubMed  Google Scholar 

  221. Prudente S, Flex E, Morini E, Turchi F, Capponi D, De Cosmo S et al (2007) A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities. Diabetes 56(5):1468–1474

    Article  CAS  PubMed  Google Scholar 

  222. Ceperuelo-Mallafré V, Miranda M, Chacón MR, Vilarrasa N, Megia A, Gutiérrez C et al (2007) Adipose tissue expression of the glycerol channel aquaporin-7 gene is altered in severe obesity but not in type 2 diabetes. J Clin Endocrinol Metab 92(9):3640–3645

    Article  PubMed  Google Scholar 

  223. Miranda M, Ceperuelo-Mallafré V, Lecube A, Hernandez C, Chacon MR, Fort JM et al (2009) Gene expression of paired abdominal adipose AQP7 and liver AQP9 in patients with morbid obesity: relationship with glucose abnormalities. Metab Clin Exp 58(12):1762–1768

    Article  CAS  PubMed  Google Scholar 

  224. Catalán V, Gómez-Ambrosi J, Pastor C, Rotellar F, Silva C, Rodríguez A et al (2008) Influence of morbid obesity and insulin resistance on gene expression levels of AQP7 in visceral adipose tissue and AQP9 in liver. Obes Surg 18(6):695–701

    Article  PubMed  Google Scholar 

  225. da Silva IV, Díaz-Sáez F, Zorzano A, Gumà A, Camps M, Soveral G (2020) Aquaglyceroporins are differentially expressed in beige and white adipocytes. Int J Mol Sci 21(2):610

    Article  PubMed  PubMed Central  Google Scholar 

  226. Krüger C, Jörns A, Kaynert J, Waldeck-Weiermair M, Michel T, Elsner M et al (2021) The importance of aquaporin-8 for cytokine-mediated toxicity in rat insulin-producing cells. Free Radic Biol Med 174:135–143

    Article  PubMed  Google Scholar 

  227. Ballard ST, Inglis SK (2004) Liquid secretion properties of airway submucosal glands. J Physiol 556(Pt 1):1–10

    Article  CAS  PubMed  Google Scholar 

  228. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24(3):224–234

    Article  CAS  PubMed  Google Scholar 

  229. Verkman AS (2007) Role of aquaporins in lung liquid physiology. Respir Physiol Neurobiol 159(3):324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Song Y, Verkman AS (2001) Aquaporin-5 dependent fluid secretion in airway submucosal glands. J Biol Chem 276(44):41288–41292

    Article  CAS  PubMed  Google Scholar 

  231. Wang Y, Cohen J, Boron WF, Schulten K, Tajkhorshid E (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157(3):534–544

    Article  CAS  PubMed  Google Scholar 

  232. Shen Y, Wang Y, Chen Z, Wang D, Wang X, ** M et al (2011) Role of aquaporin 5 in antigen-induced airway inflammation and mucous hyperproduction in mice. J Cell Mol Med 15(6):1355–1363

    Article  CAS  PubMed  Google Scholar 

  233. Yadav E, Yadav N, Hus A, Yadav JS (2020) Aquaporins in lung health and disease: emerging roles, regulation, and clinical implications. Respir Med 174:106193

    Article  PubMed  PubMed Central  Google Scholar 

  234. Tiwari S, Ali MJ, Vemuganti GK (2014) Human lacrimal gland regeneration: perspectives and review of literature. Saudi J Ophthalmol 28(1):12–18

    Article  PubMed  Google Scholar 

  235. Yu D, Thelin WR, Randell SH, Boucher RC (2012) Expression profiles of aquaporins in rat conjunctiva, cornea, lacrimal gland and meibomian gland. Exp Eye Res 103:22–32

    Article  CAS  PubMed  Google Scholar 

  236. Okada N, Kawakita T, Ito M, Tsubota K (2021) Aquaporins 8 and 9 as possible markers for adult murine lacrimal gland cells. Biomed Res Int 2021:6888494

    Article  PubMed  PubMed Central  Google Scholar 

  237. Ishida N, Hirai SI, Mita S (1997) Immunolocalization of aquaporin homologs in mouse lacrimal glands. Biochem Biophys Res Commun 238(3):891–895

    Article  CAS  PubMed  Google Scholar 

  238. Sasaki Y, Tsubota K, Kawedia JD, Menon AG, Yasui M (2007) The difference of aquaporin 5 distribution in acinar and ductal cells in lacrimal and parotid glands. Curr Eye Res 32(11):923–929

    Article  CAS  PubMed  Google Scholar 

  239. Ding C, Parsa L, Nandoskar P, Zhao P, Wu K, Wang Y (2010) Duct system of the rabbit lacrimal gland: structural characteristics and role in lacrimal secretion. Invest Ophthalmol Vis Sci 51(6):2960–2967

    Article  PubMed  PubMed Central  Google Scholar 

  240. Dartt DA, Møller M, Poulsen JH (1981) Lacrimal gland electrolyte and water secretion in the rabbit: localization and role of (Na+ + K+)-activated ATPase. J Physiol 321:557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tóth-Molnár E, Ding C (2020) New insight into lacrimal gland function: role of the duct epithelium in tear secretion. Ocul Surf 18(4):595–603

    Article  PubMed  Google Scholar 

  242. Moore M, Ma T, Yang B, Verkman AS (2000) Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5. Exp Eye Res 70(5):557–562

    Article  CAS  PubMed  Google Scholar 

  243. Ruiz-Ederra J, Levin MH, Verkman AS (2009) In situ fluorescence measurement of tear film [Na+], [K+], [Cl-], and pH in mice shows marked hypertonicity in aquaporin-5 deficiency. Invest Ophthalmol Vis Sci 50(5):2132–2138

    Article  PubMed  Google Scholar 

  244. Liu Y, Di G, Hu S, Zhao T, Xu X, Wang X et al (2020) Expression profiles of CircRNA and mRNA in lacrimal glands of AQP5−/− mice with primary dry eye. Front Physiol 11:1010

    Article  PubMed  PubMed Central  Google Scholar 

  245. Tradtrantip L, Tajima M, Li L, Verkman AS (2009) Aquaporin water channels in transepithelial fluid transport. J Med Investig 56(Suppl):179–184

    Article  Google Scholar 

  246. Tsubota K, Hirai S, King LS, Agre P, Ishida N (2001) Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjögren’s syndrome. Lancet 357(9257):688–689

    Article  CAS  PubMed  Google Scholar 

  247. Ding C, Nandoskar P, Lu M, Thomas P, Trousdale MD, Wang Y (2011) Changes of aquaporins in the lacrimal glands of a rabbit model of Sjögren’s syndrome. Curr Eye Res 36(6):571–578

    Article  PubMed  PubMed Central  Google Scholar 

  248. Enger TB, Aure MH, Jensen JL, Galtung HK (2014) Calcium signaling and cell volume regulation are altered in Sjögren’s syndrome. Acta Odontol Scand 72(7):549–556

    Article  CAS  PubMed  Google Scholar 

  249. Mailleux AA, Overholtzer M, Brugge JS (2008) Lumen formation during mammary epithelial morphogenesis: insights from in vitro and in vivo models. Cell Cycle 7(1):57–62

    Article  CAS  PubMed  Google Scholar 

  250. Shennan DB, Peaker M (2000) Transport of milk constituents by the mammary gland. Physiol Rev 80(3):925–951

    Article  CAS  PubMed  Google Scholar 

  251. McManaman JL, Neville MC (2003) Mammary physiology and milk secretion. Adv Drug Deliv Rev 55(5):629–641

    Article  CAS  PubMed  Google Scholar 

  252. Nazemi S, Rahbek M, Parhamifar L, Moghimi SM, Babamoradi H, Mehrdana F et al (2014) Reciprocity in the developmental regulation of aquaporins 1, 3 and 5 during pregnancy and lactation in the rat. PLoS One 9(9):e106809

    Article  PubMed  PubMed Central  Google Scholar 

  253. Matsuzaki T, Machida N, Tajika Y, Ablimit A, Suzuki T, Aoki T et al (2005) Expression and immunolocalization of water-channel aquaporins in the rat and mouse mammary gland. Histochem Cell Biol 123(4–5):501–512

    Article  CAS  PubMed  Google Scholar 

  254. Mobasheri A, Kendall BH, Maxwell JEJ, Sawran AV, German AJ, Marples D et al (2011) Cellular localization of aquaporins along the secretory pathway of the lactating bovine mammary gland: an immunohistochemical study. Acta Histochem 113(2):137–149

    Article  CAS  PubMed  Google Scholar 

  255. Kaihoko Y, Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K (2020) Distinct expression patterns of aquaporin 3 and 5 in ductal and alveolar epithelial cells in mouse mammary glands before and after parturition. Cell Tissue Res 380(3):513–526

    Article  CAS  PubMed  Google Scholar 

  256. Matsunaga K, Tsugami Y, Kumai A, Suzuki T, Nishimura T, Kobayashi K (2018) IL-1β directly inhibits milk lipid production in lactating mammary epithelial cells concurrently with enlargement of cytoplasmic lipid droplets. Exp Cell Res 370(2):365–372

    Article  CAS  PubMed  Google Scholar 

  257. Mustofa, Yuliani FS, Purwono S, Sadewa AH, Damayanti E, Heriyanto DS (2020) Polyherbal formula (ASILACT®) induces Milk production in lactating rats through upregulation of α-lactalbumin and aquaporin expression. BMC Complement Med Ther 20(1):368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Mobasheri A, Barrett-Jolley R (2014) Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia. J Mammary Gland Biol Neoplasia 19(1):91–102

    Article  PubMed  Google Scholar 

  259. Dai C, Charlestin V, Wang M, Walker ZT, Miranda-Vergara MC, Facchine BA et al (2020) Aquaporin-7 regulates the response to cellular stress in breast cancer. Cancer Res 80(19):4071–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Inoue R, Sohara E, Rai T, Satoh T, Yokozeki H, Sasaki S et al (2013) Immunolocalization and translocation of aquaporin-5 water channel in sweat glands. J Dermatol Sci 70(1):26–33

    Article  CAS  PubMed  Google Scholar 

  261. Nejsum LN, Kwon T-H, Jensen UB, Fumagalli O, Frøkiaer J, Krane CM et al (2002) Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci U S A 99(1):511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zhang M, Zeng S, Zhang L, Li H, Chen L, Zhang X et al (2014) Localization of Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotransporter 1 and aquaporin-5 in human eccrine sweat glands. Acta Histochem 116(8):1374–1381

    Article  CAS  PubMed  Google Scholar 

  263. Sato K, Cavallin S, Sato KT, Sato F (1994) Secretion of ions and pharmacological responsiveness in the mouse paw sweat gland. Clin Sci (Lond) 86(2):133–139

    Article  CAS  PubMed  Google Scholar 

  264. Song Y, Sonawane N, Verkman AS (2002) Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J Physiol 541(Pt 2):561–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kabashima K, Shimauchi T, Kobayashi M, Fukamachi S, Kawakami C, Ogata M et al (2008) Aberrant aquaporin 5 expression in the sweat gland in aquagenic wrinkling of the palms. J Am Acad Dermatol 59(2 Suppl 1):S28–S32

    Article  PubMed  Google Scholar 

  266. Bovell DL, Lindsay SL, Corbett AD, Steel C (2006) Immunolocalization of aquaporin-5 expression in sweat gland cells from normal and anhidrotic horses. Vet Dermatol 17(1):17–23

    Article  PubMed  Google Scholar 

  267. Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA et al (2019) The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One 14(5):e0216249

    Article  PubMed  PubMed Central  Google Scholar 

  268. Lin J-B, Kang M-Q, Huang L-P, Zhuo Y, Li X, Lai F-C (2021) CHRNA1 promotes the pathogenesis of primary focal hyperhidrosis. Mol Cell Neurosci 111:103598

    Article  CAS  PubMed  Google Scholar 

  269. Lin J-B, Chen J-F, Lai F-C, Li X, **e J-B, Tu Y-R et al (2020) Involvement of activin a receptor type 1 (ACVR1) in the pathogenesis of primary focal hyperhidrosis. Biochem Biophys Res Commun 528(2):299–304

    Article  CAS  PubMed  Google Scholar 

  270. Abdul-Wahab A, Takeichi T, Liu L, Lomas D, Hughes B, Akiyama M et al (2016) Autosomal dominant diffuse nonepidermolytic palmoplantar keratoderma due to a recurrent mutation in aquaporin-5. Br J Dermatol 174(2):430–432

    Article  CAS  PubMed  Google Scholar 

  271. Blaydon DC, Lind LK, Plagnol V, Linton KJ, Smith FJD, Wilson NJ et al (2013) Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am J Hum Genet 93(2):330–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Cao X, Yin J, Wang H, Zhao J, Zhang J, Dai L et al (2014) Mutation in AQP5, encoding aquaporin 5, causes palmoplantar keratoderma Bothnia type. J Invest Dermatol 134(1):284–287

    Article  CAS  PubMed  Google Scholar 

  273. Tricarico PM, Mentino D, De Marco A, Del Vecchio C, Garra S, Cazzato G, Foti C, Crovella S, Calamita G (2022) Aquaporins are one of the critical factors in the disruption of the skin barrier in inflammatory skin diseases. Int J Mol Sci 23(7):4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by and a research credit (CDR) J.0053.20 from the Fund for Scientific Research (F.R.S.-FNRS), Foundation Jaumotte-Demoulin and David & Alice Van Buuren Fund (Belgium) and by PRIN2017 “Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale 2017 (grant # 2017J92TM5) by Italian MUR to G.C. We thank B. Jellouli for her secretarial assistance. Fig. 16.1 was prepared using BioRender.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Delporte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calamita, G., Delporte, C. (2023). Aquaporins in Glandular Secretion. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 1398. Springer, Singapore. https://doi.org/10.1007/978-981-19-7415-1_16

Download citation

Publish with us

Policies and ethics

Navigation