Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 302))

  • 1455 Accesses

Abstract

The purpose of this research is to present the mathematical model for the nonlinear vibration analysis of a deepwater catenary riser subjected to a wave excitation. The mathematical model of the catenary riser is derived from the work-energy principle, including the geometrical nonlinearity and nonlinear loading from a square drag term of hydrodynamic force. The finite element method is used to form the equation of motion for solving the numerical solution. The nonlinear equation of motion can be written in the appropriate form, which is convenient to perform the numerical integration. The Newmark time integration incorporated direct iteration is used to solve the nonlinear vibration response of the catenary riser. The nonlinear forced vibration analysis is carried out for both small and large vibration amplitudes. From numerical investigation, it was found that the vibration response of the riser due to wave force is a harmonic motion and the vibration amplitude increases as the increasing in wave amplitude. In addition, the effect of nonlinear geometry has a significant influence on the vibration amplitude of the riser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 319.93
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 287.83
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 406.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Athisakul, C., Klaycham, K., Chucheepsakul, S.: Critical top tension for static equilibrium configuration of a steel catenary riser. China Ocean Eng. 28(6), 829–842 (2014). https://doi.org/10.1007/s13344-014-0064-x

    Article  Google Scholar 

  • Cheng, Y., Ji, C., Zhai, G., Oleg, G.: Nonlinear analysis for ship-generated waves interaction with mooring line/riser systems. Mar. Struct. 59, 1–24 (2018)

    Article  Google Scholar 

  • Chucheepsakul, S., Monprapussorn, T.: Nonlinear buckling of marine elastica pipes transporting fluid. Int. J. Struct. Stab. Dyn. 1(3), 333–365 (2001)

    Article  Google Scholar 

  • Chucheepsakul, S., Monprapussorn, T., Huang, T.: Large strain formulations of extensible flexible marine pipes transporting fluid. J. Fluids Struct. 17(2), 185–224 (2003)

    Article  Google Scholar 

  • Chucheepsakul, S., Huang T.: Natural frequencies of a marine riser in three-dimensions. In: Proceedings of the 7th International Offshore Mechanics and Arctic Engineering Symposium, pp. 651–658 (1989)

    Google Scholar 

  • Cook, R.D., Malkus, D.S., Plesha, M.E.: Concept and Applications of Finite Element Analysis, 4th edn. Wiley, New York, USA (2002)

    MATH  Google Scholar 

  • Duanmu, Y., Zou, L., Wan, D.: Numerical analysis of multi-modal vibrations of a vertical riser in step currents. Ocean Eng. 152, 428–442 (2018)

    Article  Google Scholar 

  • Kaewunruen, S., Chiravatchradej, J., Chucheepsakul, S.: Nonlinear free vibrations of marine risers/pipes transporting fluid. Ocean Eng. 32(3–4), 417–440 (2005)

    Article  Google Scholar 

  • Klaycham, K., Athisakul, C., Chucheepsakul, S.: Large amplitude vibration of a deepwater riser conveying oscillatory internal fluid flow. Ocean Eng. 217, 107966-1–108015 (2020)

    Article  Google Scholar 

  • Lei, S., Zhang, W., Lin, J., Yue, Q., Kennedy, D., Williams, F.W.: Frequency domain response of a parametrically excited riser under random wave forces. J. Sound Vib. 333(2), 485–498 (2014)

    Article  Google Scholar 

  • Mazzilli, C.E.N., Rizza, F., Dias, T.: Heave-imposed motion in vertical risers: A reduced-order modelling based on Bessel-like modes. Procedia IUTAM 19, 136–143 (2016)

    Article  Google Scholar 

  • Meng, S., Song, S., Che, C., Zhang, W.: Internal flow effect on the parametric instability of deepwater drilling risers. Ocean Eng. 149, 305–312 (2018)

    Article  Google Scholar 

  • Montoya-Hernández, D.J., Vázquez-Hernández, A.O., Cuamatzi, R., Hernandez, M.A.: Natural frequency analysis of a marine riser considering multiphase internal flow behavior. Ocean Eng. 92, 103–113 (2014)

    Article  Google Scholar 

  • Morison, J.R., O’Brien, M.P., Johnson, J.W., Schaaf, S.A.: The force exerted by surface waves on piles. Petrol. Trans. Am. Inst. Min. Eng. 189, 149–154 (1950)

    Google Scholar 

  • Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85(3), 67–94 (1959)

    Article  Google Scholar 

  • Paidoussis, M.P.: Fluid Structure Interaction: Slender Structure and Axial Flow, vol. 1. Academic, London (1998)

    Google Scholar 

  • Punjarat, O., Chucheepsakul, C.: Nonlinear formulation and free vibration of a large-sag extensible catenary riser. Ocean Syst. Eng. 11(1), 59–81 (2021)

    Google Scholar 

  • Sparks, C.P.: Fundamentals of Marine Riser Mechanics: Basic Principles and Simplified Analyses. Pennwell Corporation, Oklahoma, USA (2007)

    Google Scholar 

  • Takafuji, F.C.M., Martins, C.A.: Comparison between frequency domain and time domain riser analysis. J. Offshore Mech. Arct. Eng. 134(4), 041301–041309 (2012)

    Article  Google Scholar 

  • Vásquez, J.A.M., Avila, J.P.J.: A parametric analysis of the influence of the internal slug flow on the dynamic response of flexible marine risers. Ocean Eng. 174, 169–185 (2019)

    Article  Google Scholar 

  • Wang, J., **ang, S., Fu, S., Cao, P., Yang, J., He, J.: Experimental investigation on the dynamic responses of a free-hanging water intake riser under vessel motion. Mar. Struct. 50, 1–19 (2016)

    Article  Google Scholar 

  • Zhang, L., et al.: Axial and transverse coupled vibration characteristics of deep-water riser with internal flow. Procedia Eng. 126, 260–264 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding provided by the Department of Civil Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, and the support from Thailand Research and Innovation under Fundamental Fund 2022 (Advanced Construction Towards Thailand 4.0 Project) to the Construction Innovations and Future Infrastructures Research Center at the King Mongkut’s University of Technology Thonburi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karun Klaycham .

Editor information

Editors and Affiliations

Appendix A

Appendix A

According to Eq. (16), the linear element stiffness matrix \(\left[{{\varvec{k}}}_{L}\right]\) can be calculated by

$$ \left[ {{\varvec{k}}_{L} } \right] = \left[ {{}_{b}{\varvec{k}}_{L} } \right] + \left[ {{}_{a}{\varvec{k}}_{L} } \right] $$
(A.1)

where the linear element bending stiffness matrix \(\left[ {{}_{b}^{{}} {\varvec{k}}_{L} } \right]\) and the linear element axial stiffness matrix \(\left[ {{}_{a}^{{}} {\varvec{k}}_{L} } \right]\) are

$$ \begin{aligned} \left[ {{}_{b}^{{}} {\varvec{k}}_{L} } \right] & = EI_{P} \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} {\kappa_{s}^{4} } & {\kappa_{s}^{2} \kappa_{s}^{^{\prime}} } \\ {\kappa_{s}^{2} \kappa_{s}^{^{\prime}} } & {\kappa_{s}^{^{\prime}2} } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right] + \left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} {\kappa_{s}^{2} } & 0 \\ {\kappa_{s}^{^{\prime}} } & 0 \\ \end{array} } \right]\left[ {{\varvec{N}}_{d}^{^{\prime\prime}} } \right]} \right\}{\text{d}}s_{s} \\ & \quad + EI_{P} \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d}^{^{\prime\prime}} } \right]^{T} \left[ {\begin{array}{*{20}c} {\kappa_{s}^{2} } & {\kappa_{s}^{^{\prime}} } \\ 0 & 0 \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right] + \left[ {{\varvec{N}}_{d}^{^{\prime\prime}} } \right]^{T} \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right]\left[ {{\varvec{N}}_{d}^{^{\prime\prime}} } \right]} \right\}{\text{d}}s_{s} \\ \end{aligned} $$
(A.2)
$$ \begin{aligned} \left[ {{}_{a}^{{}} {\varvec{k}}_{L} } \right] & = \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d} } \right]^{T} \left\{ {N_{as} \left[ {\begin{array}{*{20}c} {\kappa_{s}^{2} } & 0 \\ 0 & {\kappa_{s}^{2} } \\ \end{array} } \right] + EA_{P} \left[ {\begin{array}{*{20}c} {\kappa_{s}^{2} } & 0 \\ 0 & 0 \\ \end{array} } \right]} \right\}\left[ {{\varvec{N}}_{d} } \right]} \right\}{\text{d}}s_{s} \\ & \quad + \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d} } \right]^{T} \left\{ {N_{as} \left[ {\begin{array}{*{20}c} 0 & { - \kappa_{s} } \\ {\kappa_{s} } & 0 \\ \end{array} } \right] + EA_{P} \left[ {\begin{array}{*{20}c} 0 & { - \kappa_{s} } \\ 0 & 0 \\ \end{array} } \right]} \right\}\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]} \right\}{\text{d}}s_{s} \\ & \quad + \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} \left\{ {N_{as} \left[ {\begin{array}{*{20}c} 0 & {\kappa_{s} } \\ { - \kappa_{s} } & 0 \\ \end{array} } \right] + EA_{P} \left[ {\begin{array}{*{20}c} 0 & 0 \\ { - \kappa_{s} } & 0 \\ \end{array} } \right]} \right\}\left[ {{\varvec{N}}_{d} } \right]} \right\}{\text{d}}s_{s} \\ & \quad + \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} \left\{ {N_{as} \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] + EA_{P} \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right]} \right\}\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]} \right\}{\text{d}}s_{s} \\ \end{aligned} $$
(A.3)

The first-order nonlinear element stiffness matrix \(\left[ {{\varvec{k}}_{N1} } \right]\) resulting from the nonlinear geometric is

$$ \begin{aligned} \left[ {{\varvec{k}}_{N1} } \right] & = \frac{3}{2}EA_{P} \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} {2\kappa_{s}^{2} \alpha } & { - \kappa_{s}^{2} \beta } \\ { - \kappa_{s}^{2} \beta } & 0 \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right] + \left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} { - \kappa_{s} \beta } & { - 2\kappa_{s} \alpha } \\ 0 & {\kappa_{s} \beta } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]} \right\}{\text{d}}s_{s} \\ & \quad + \frac{3}{2}EA_{P} \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} \left[ {\begin{array}{*{20}c} { - \kappa_{s} \beta } & 0 \\ { - 2\kappa_{s} \alpha } & {\kappa_{s} \beta } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right] + \left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} \left[ {\begin{array}{*{20}c} 0 & \beta \\ \beta & {2\alpha } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]} \right\}{\text{d}}s_{s} \\ \end{aligned} $$
(A.4)

and the second-order nonlinear element stiffness matrix \(\left[ {{\varvec{k}}_{N2} } \right]\) is

$$ \begin{aligned} \left[ {{\varvec{k}}_{N2} } \right] & = \frac{3}{2}EA_{P} \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} {\kappa_{s}^{2} \alpha^{2} } & { - \kappa_{s}^{2} \alpha \beta } \\ { - \kappa_{s}^{2} \alpha \beta } & {\kappa_{s}^{2} \beta^{2} } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right] + \left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} { - \kappa_{s} \alpha \beta } & { - \kappa_{s} \alpha^{2} } \\ {\kappa_{s} \beta^{2} } & {\kappa_{s} \alpha \beta } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]} \right\}{\text{d}}s_{s} \\ & \quad + \frac{3}{2}EA_{P} \mathop \smallint \limits_{0}^{l} \left\{ {\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} \left[ {\begin{array}{*{20}c} { - \kappa_{s} \alpha \beta } & {\kappa_{s} \beta^{2} } \\ { - \kappa_{s} \alpha^{2} } & {\kappa_{s} \alpha \beta } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right] + \left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} \left[ {\begin{array}{*{20}c} {\beta^{2} } & {\alpha \beta } \\ {\alpha \beta } & {\alpha^{2} } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]} \right\}{\text{d}}s_{s} \\ \end{aligned} $$
(A.5)

The parameters \(\alpha\) and \(\beta\) in Eqs. (A.4) and (A.5) are defined as follows.

$$ \alpha = u_{td}^{^{\prime}} - \kappa_{s} v_{nd} $$
(A.6)
$$ \beta = v_{nd}^{^{\prime}} + \kappa_{s} u_{td} $$
(A.7)

The matrices \(\left[ {\varvec{m}} \right]\), \(\left[ {\varvec{g}} \right]\), and \(\left[ {{\varvec{k}}_{i} } \right]\) in Eq. (17) are the element mass matrix, element gyroscopic matrix, and element centrifugal force matrix, respectively. These matrices can be expressed as follows.

$$ \left[ {\varvec{m}} \right] = \mathop \smallint \limits_{0}^{l} \left[ {{\varvec{N}}_{d} } \right]^{T} \left( {m_{P} + m_{i} } \right)\left[ {{\varvec{N}}_{d} } \right]{\text{d}}s_{s} $$
(A8)
$$ \left[ {\varvec{g}} \right] = \mathop \smallint \limits_{0}^{l} \left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} 2m_{i} V_{is} \left[ {{\varvec{N}}_{d} } \right]{\text{d}}s_{s} $$
(A.9)
$$ \left[ {{\varvec{k}}_{i} } \right] = \mathop \smallint \limits_{0}^{l} \left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]^{T} m_{i} V_{is}^{2} \left[ {{\varvec{N}}_{d}^{^{\prime}} } \right]{\text{d}}s_{s} $$
(A.10)

The matrices \(\left[ {{\varvec{m}}_{a} } \right]\), \(\left[ {\varvec{c}} \right]\), and \(\left\{ {\varvec{f}} \right\}\) in Eq. (18) are the element added mass matrix, the element hydrodynamic dam** matrix, and the element hydrodynamic excitation vector, respectively. These matrices can be expressed as follows.

$$ \left[ {{\varvec{m}}_{a} } \right] = \mathop \smallint \limits_{0}^{l} \left[ {{\varvec{N}}_{d} } \right]^{T} C_{a}^{*} \left[ {{\varvec{N}}_{d} } \right]{\text{d}}s_{s} $$
(A.11)
$$ \left[ {\varvec{c}} \right] = \mathop \smallint \limits_{0}^{l} \left[ {{\varvec{N}}_{d} } \right]^{T} \left[ {\begin{array}{*{20}c} {C_{eqn}^{*} } & 0 \\ 0 & {C_{eqt}^{*} } \\ \end{array} } \right]\left[ {{\varvec{N}}_{d} } \right]{\text{d}}s_{s} $$
(A.12)
$$ \left\{ {\varvec{f}} \right\} = \mathop \smallint \limits_{0}^{l} \left[ {{\varvec{N}}_{d} } \right]^{T} \left\{ {\begin{array}{*{20}c} {C_{Dn}^{*} V_{Hn}^{2} + C_{M}^{*} \dot{V}_{Hn} } \\ {C_{Dt}^{*} V_{Ht}^{2} + C_{M}^{*} \dot{V}_{Ht} } \\ \end{array} } \right\}{\text{d}}s_{s} $$
(A.13)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lertchanchaikun, N., Klaycham, K., Athisakul, C., Chucheepsakul, S. (2023). Nonlinear Vibrations of Deepwater Catenary Riser Subjected to Wave Excitation. In: Geng, G., Qian, X., Poh, L.H., Pang, S.D. (eds) Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022. Lecture Notes in Civil Engineering, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-19-7331-4_65

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7331-4_65

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7330-7

  • Online ISBN: 978-981-19-7331-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation