Effect of Viscosity on the Spherical Shock Wave Propagation in a Dusty Gas with Radiation Heat Flux and Exponentially Varying Density

  • Conference paper
  • First Online:
Frontiers in Industrial and Applied Mathematics (FIAM 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 410))

Included in the following conference series:

  • 253 Accesses

Abstract

This paper investigates the effect of viscosity on the propagation of spherical shock waves in a dusty gas with a radiation heat flux and a density that grows exponentially. It is assumed that the dusty gas is a blend of fine solid particles and ideal gas. In a perfect gas, solid particles are uniformly distributed. To obtain several significant shock propagation properties, the solid particles are treated as a pseudo-fluid, and the mixture’s heat conduction is neglected. The flow’s equilibrium conditions are expected to be maintained in an optically thick gray gas model, and radiation is assumed to be of the diffusion type. The effects of modifying the viscosity parameter and time are explored, and non-similar solutions are found. The formal solution is determined by assuming that the shock wave’s velocity is variable and its total energy is not constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grover, R., Hardy, J.W.: The propagation of shocks in exponentially decreasing atmospheres. Astrophys. J. 143, 48 (1966)

    Article  Google Scholar 

  2. Hayes, W.D.: Self-similar strong shocks in an exponential medium. J. Fluid Mech. 32(2), 305–315 (1968)

    Article  Google Scholar 

  3. Deb Ray, G., Bhowmick, J.B.: Propagation of cylindrical and spherical explosion waves in an exponential medium. Defence Sci. J. 24, 9–12 (1974)

    MATH  Google Scholar 

  4. Laumbach, D.D., Probstein, R.F.: A point explosion in a cold exponential atmosphere part i. J. Fluid Mech. 35(1), 53–75 (1969)

    Article  Google Scholar 

  5. Verma, B.G., Vishwakarma, J.P.: Axially symmetric explosion in magnetogasdynamics. Astrophys. Space Sci. 69(1), 177–188 (1980)

    Article  Google Scholar 

  6. Laumbach, D.D., Probstein, R.F.: A point explosion in a cold exponential atmosphere part ii, radiating flow. J. Fluid Mech. 40(1), 833–858 (1970)

    Article  Google Scholar 

  7. Laumbach, D.D., Probstein, R.F.: Self-similar strong shocks with radiation in a decreasing exponential atmosphere. Phys. Fluids 13(5), 1178–1183 (1970)

    Article  Google Scholar 

  8. Bhowmick, J.B.: An exact analytical solution in radiation gas dynamics. Astrophys. Space Sci. 74(2), 481–485 (1981)

    Article  MATH  Google Scholar 

  9. Singh, J.B., Srivastava, S.K.: Propagation of spherical shock waves in an exponential medium with radiation heat flux. Astrophys. Space Sci. 88(2), 277–282 (1982)

    Article  MATH  Google Scholar 

  10. Christer, A.H., Helliwell, J.B.: Cylindrical shock and detonation waves in magnetogasdynamics. J. Fluid Mech. 39(4), 705–725 (1969)

    Article  MATH  Google Scholar 

  11. Verma, B.G.: On a cylindrical blast ware propagating in a conducting gas. Zeitschrift fur angewandte Mathematik und Physik ZAMP 21(1), 119–124 (1970)

    Article  MATH  Google Scholar 

  12. Higashino, F., Suzuki, T.: The effect of particles on blast waves in a dusty gas. Zeitschrift für Naturforschung A 35(12), 1330–1336 (1980)

    Article  Google Scholar 

  13. Miura, H., Israel Glass, I.: On the passage of a shock wave through a dusty-gas layer. Proc. R. Soc. Lond. A. Math. Phys. Sci. 385(1788), 85–105 (1983)

    Google Scholar 

  14. Popel, S.I., Gisko, A.A.: Charged dust and shock phenomena in the solar system. Nonlinear Process. Geophys. 13(2), 223–229 (2006)

    Article  Google Scholar 

  15. Pai, S.I., Menon, S., Fan, Z.Q.: Similarity solutions of a strong shock wave propagation in a mixture of a gas and dusty particles. Int. J. Eng. Sci. 18(12), 1365–1373 (1980)

    Article  MATH  Google Scholar 

  16. Vishwakarma, J.P.: Propagation of shock waves in a dusty gas with exponentially varying density. Eur. Phys. J. B-Condensed Matter Complex Syst. 16(2), 369–372 (2000)

    Google Scholar 

  17. Singh, K.K., Vishwakarma, J.P.: Propagation of spherical shock waves in a dusty gas with radiation heat-flux. J. Theor. Appl. Mech. 45(4), 801–817 (2007)

    Google Scholar 

  18. Macquorn Rankine, W.J.: Xv on the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870)

    Google Scholar 

  19. Rayleigh, L.: Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Charact. 84(570), 247–284 (1910)

    Google Scholar 

  20. Ingram Taylor, G.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Charact. 84(571), 371–377 (1910)

    Google Scholar 

  21. Henderson, L.F., Crutchfield, W.Y., Virgona, R.J.: The effects of thermal conductivity and viscosity of argon on shock waves diffracting over rigid ramps. J. Fluid Mech. 331, 1–36 (1997)

    Article  Google Scholar 

  22. Simeonides, G.: Generalized reference enthalpy formulations and simulation of viscous effects in hypersonic flow. Shock Waves 8(3), 161–172 (1998)

    Article  MATH  Google Scholar 

  23. Huang, F., Matsumura, A., Shi, X.: Viscous shock wave and boundary layer solution to an inflow problem for compressible viscous gas. Commun. Math. Phys. 239(1), 261–285 (2003)

    Article  MATH  Google Scholar 

  24. Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)

    Article  MATH  Google Scholar 

  25. Suzuki, T., Ohyagi, S., Higashino, F., Takano, A.: The propagation of reacting blast waves through inert particle clouds. Acta Astronaut. 3(7–8), 517–529 (1976)

    Article  MATH  Google Scholar 

  26. Narsimhulu, D., Addepalli, R., Satpathi Dipak, K.: Similarity solution of spherical shock waves-effect of viscosity. Proyecciones (Antofagasta) 35(1), 11–31 (2016)

    Article  MATH  Google Scholar 

  27. Wang, K.C.: Approximate solution of a plane radiating “piston problem.” Phys. Fluids 9(10), 1922–1928 (1966)

    Article  Google Scholar 

  28. Pai, S.: Two phase flows. Vol. 3, Vieweg Tracts in Pure and Applied Physics, pp. 56–80 (1977)

    Google Scholar 

  29. Narasimhulu Naidu, G., Venkatanandam, K., Ranga Rao, M.P.: Approximate analytical solutions for self-similar flows of a dusty gas with variable energy. Int. J. Eng. Sci. 23(1), 39–49 (1985)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravilisetty Revathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Revathi, R., Narsimhulu, D., Ramu, A. (2023). Effect of Viscosity on the Spherical Shock Wave Propagation in a Dusty Gas with Radiation Heat Flux and Exponentially Varying Density. In: Sharma, R.K., Pareschi, L., Atangana, A., Sahoo, B., Kukreja, V.K. (eds) Frontiers in Industrial and Applied Mathematics. FIAM 2021. Springer Proceedings in Mathematics & Statistics, vol 410. Springer, Singapore. https://doi.org/10.1007/978-981-19-7272-0_26

Download citation

Publish with us

Policies and ethics

Navigation