Lignin-Derived Carbonaceous Materials for Supercapacitor Applications

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

Electrochemical supercapacitors are energy storage systems that exhibit high-power density, high cycle stability, and fast charge–discharge capacity. Carbon-based electrodes have been extensively used for supercapacitors due to their excellent porosity, mechanical properties, and large surface areas. However, these carbons are produced from fossil-based and unsustainable resources, mainly polyacrylonitrile. In recent years, lignin has appeared as a potential alternative precursor for producing sustainable carbon materials. Specifically, lignin’s renewable nature and large content of aromatic rings with reactive functional groups make it a highly viable candidate for electrochemical supercapacitor materials. This chapter deals with the current development of carbonaceous electrodes from sustainable lignin precursors. An extensive investigation of the utilization of lignin biopolymers toward develo** high-performance electrodes for supercapacitors is described. The computational modeling techniques for designing supercapacitors and investigating their properties are illustrated. In conclusion, the challenges and improvements with lignin for supercapacitors are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

ACN:

Acetonitrile

bbACs:

Biomass-based activated carbons

BET:

Brunauer–Emmett–Teller

\({\text{BF}}_4^-\) :

Tetrafluoroborate

CA:

Cellulose acetate

BMIM+:

1-Butyl-3-methylimidazolium

CNT:

Carbon nanotube

CV:

Cyclic voltammetry

DCA:

Dicyanamide

DFT:

Density functional theory

[DIPEA][TFSI]:

Diisopropyl-ethyl-ammonium bis(trifluoromethanesulfonyl)-imide

DMAC:

Dimethylacetamide

DMF:

Dimethylformamide

EDLC:

Electrochemical double layer capacitors

EIS:

Electrochemical impedance spectroscopy

ESR:

Equivalent series resistance

[Et3NH][TFSI]:

Triethylammonium bis(trifluoromethylsufonyl)imide

FSI:

Bis(fluorosulfonyl)imide

GCD:

Galvanostatic charge–discharge

GO:

Graphene-oxide

GPE:

Gel-polymer electrolyte

HOMC:

Highly ordered mesoporous carbon

IL:

Ionic liquids

LAC:

Lignin hierarchical porous carbon

LC:

Lignin-based carbon

MD:

Molecular dynamics

MOF:

Metal-organic framework

TEG:

Thermoelectric generators

PAA:

Poly(amic acid)

PAN:

Polyacrylonitrile

PBI:

Polybenzimidazole

PDMS:

Polydimethylsiloxane

PEEK:

Poly(ether ether ketone)

PEO:

Poly(ethylene oxide)

PFTE:

Polytetrafluoroethylene

\({\text{PF}}_6^-\) :

Hexafluorophosphate

PMMA:

Polymethyl methacrylate

PVDF:

Polyvinylidene fluoride

PVDF-HFP:

Poly(vinylidene fluoride-hexafluoropropylene)

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidone

PC:

Propylene carbonate

PyC:

Pyrolytic carbon

PyNO3:

Pyrrolidinium nitrate

[Pyrr][TFSI]:

Pyrrolidinium bis(trifluoromethanesulfonyl)imide

SC:

Supercapacitor

SEM:

Scanning electron microscopy

SFG:

Surface functional group

SPE:

Solid polymer electrolyte

TEM:

Transmission electron microscopy

TEOS:

Tetraethoxy orthosilicate

TFSI:

Bis(trifluoromethanesulfonyl)imide

Tg:

Glass transition temperature

THF:

Tetrahydrofuran

ZDPC:

Zeolite-derived porous carbon

ZIF:

Zeolitic imidazolate framework

References

  1. Liu G, Chen T, Xu J, Wang K (2018) Blue energy harvesting on nanostructured carbon materials. J Mater Chem A 6(38):18357–18377

    Article  CAS  Google Scholar 

  2. Ding T, Liu K, Li J, Xue G, Chen Q, Huang L, Hu B, Zhou J (2017) All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv Func Mater 27(22):1700551

    Article  Google Scholar 

  3. Lebrun L, Guyomar D, Guiffard B, Cottinet P-J, Putson C (2009) The Characterisation of the harvesting capabilities of an electrostrictive polymer composite. Sens Actuators, A 153(2):251–257

    Article  CAS  Google Scholar 

  4. Eddiai A, Meddad M, Guyomar D, Hajjaji A, Boughaleb Y, Yuse K, Touhtouh S, Sahraoui B (2012) Enhancement of electrostrictive polymer efficiency for energy harvesting with cellular polypropylene electrets. Synth Met 162(21):1948–1953

    Article  CAS  Google Scholar 

  5. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications. J Energy Storage 17:224–227

    Article  Google Scholar 

  6. Banerjee S, De B, Sinha P, Cherusseri J, Kar KK (2020) Applications of supercapacitors. In: Springer series in materials science, vol 300. Springer, pp 341–350

    Google Scholar 

  7. Ruiz V, Blanco C, Raymundo-Piñero E, Khomenko V, Béguin F, Santamaría R (2007) Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochim Acta 52(15):4969–4973

    Article  CAS  Google Scholar 

  8. Nandi D, Mohan VB, Bhowmick AK, Bhattacharyya D (2020) Metal/metal oxide decorated graphene synthesis and application as supercapacitor: a review. J Mater Sci 55(15):6375–6400

    Article  CAS  Google Scholar 

  9. Li Zhang L, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  PubMed  Google Scholar 

  10. Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2(28):10776–10787

    Article  CAS  Google Scholar 

  11. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev ChemSoc Rev 41(41):797–828

    Article  CAS  Google Scholar 

  12. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sustain Energy Rev 101:123–145

    Article  CAS  Google Scholar 

  13. Lv H, Pan Q, Song Y, Liu X-X, Liu T (2020) A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett 12:118

    Article  CAS  Google Scholar 

  14. Balasubramaniam S, Mohanty A, Kannan Balasingam S, Kim SJ, Ramadoss A, Saravanakumar B (2020) Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett 12:85

    Article  CAS  Google Scholar 

  15. Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater 2:30–37

    Article  Google Scholar 

  16. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Conducting polymers for pseudocapacitive energy storage. Chem Mater 28(17):5989–5998

    Google Scholar 

  17. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Article  CAS  Google Scholar 

  18. Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767–784

    Article  CAS  Google Scholar 

  19. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280

    Article  CAS  Google Scholar 

  20. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24(38):5166–5180

    Article  CAS  PubMed  Google Scholar 

  21. Yumak T, Bragg D, Sabolsky EM (2019) Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications. Appl Surf Sci 469

    Google Scholar 

  22. Liu R, Duay J, Lee SB (2011) Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun 47(5):1384–1404

    Article  CAS  Google Scholar 

  23. Park S-J, Heo G-Y (2015) Precursors and manufacturing of carbon fibers. In: Park S-J (ed) Carbon fibers. Springer, Netherlands, pp 31–66

    Chapter  Google Scholar 

  24. Wu Z, Li L, Yan J, Zhang X (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4(6):1600382

    Article  Google Scholar 

  25. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  26. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  CAS  PubMed  Google Scholar 

  27. Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2(9):591–594

    Article  CAS  PubMed  Google Scholar 

  28. Pérez CR, Yeon S-H, Ségalini J, Presser V, Taberna P-L, Simon P, Gogotsi Y (2013) Structure and electrochemical performance of carbide-derived carbon nanopowders. Adv Func Mater 23(8):1081–1089

    Article  Google Scholar 

  29. Presser V, Zhang L, Niu JJ, McDonough J, Perez C, Fong H, Gogotsi Y (2011) Flexible nano-felts of carbide-derived carbon with ultra-high power handling capability. Adv Energy Mater 1(3):423–430

    Article  CAS  Google Scholar 

  30. Oschatz M, Borchardt L, Pinkert K, Thieme S, Lohe MR, Hoffmann C, Benusch M, Wisser FM, Ziegler C, Giebeler L, Rümmeli MH, Eckert J, Eychmüller A, Kaskel S (2014) Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material. Adv Energy Mater 4(2):1300645

    Article  Google Scholar 

  31. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763

    Article  CAS  PubMed  Google Scholar 

  32. Heon M, Lofland S, Applegate J, Nolte R, Cortes E, Hettinger JD, Taberna P-L, Simon P, Huang P, Brunet M, Gogotsi Y (2010) Continuous carbide-derived carbon films with high volumetric capacitance. Energy Environ Sci 4(1):135–138

    Article  Google Scholar 

  33. Dyjak S, Kiciński W, Norek M, Dyjak M, Cudziło S (2019) Carbide-derived carbon obtained via bromination of titanium carbide: comparative analysis with chlorination and hydrogen storage studies. Microporous Mesoporous Mater 273:26–34

    Article  CAS  Google Scholar 

  34. Jose Amali A, Sun J-K, Xu Q (2014) From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem Commun 50(13):1519–1522

    Article  Google Scholar 

  35. Chaikittisilp W, Hu M, Wang H, Huang H-S, Fujita T, Wu C-W, Chen L-C, Yamauchi Y, Ariga K (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48(58):7259–7261

    Google Scholar 

  36. Wang R, ** D, Zhang Y, Wang S, Lang J, Yan X, Zhang L (2017) Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. J Mater Chem A 5(1):292–302

    Article  CAS  Google Scholar 

  37. Mostazo-López MJ, Ruiz-Rosas R, Castro-Muñiz A, Nishihara H, Kyotani T, Morallón E, Cazorla-Amorós D (2018) Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors. Carbon 129:510–519

    Article  Google Scholar 

  38. Sundriyal S, Shrivastav V, Pham HD, Mishra S, Deep A, Dubal DP (2021) Advances in bio-waste derived activated carbon for supercapacitors: trends, challenges and prospective. Resour Conserv Recycl 169:105548

    Article  CAS  Google Scholar 

  39. Durairaj A, Sakthivel T, Ramanathan S, Obadiah A, Vasanthkumar S (2019) Conversion of laboratory paper waste into useful activated carbon: a potential supercapacitor material and a good adsorbent for organic pollutant and heavy metals. Cellulose 26(5):3313–3324

    Article  CAS  Google Scholar 

  40. Chang B, Guo Y, Li Y, Yang B (2015) Hierarchical porous carbon derived from recycled waste filter paper as high-performance supercapacitor electrodes. RSC Adv 5(88):72019–72027

    Article  CAS  Google Scholar 

  41. Singu DC, Joseph B, Velmurugan V, Ravuri S, Grace AN (2018) Combustion synthesis of graphene from waste paper for high performance supercapacitor electrodes. Int J Nanosci 17:1760023

    Article  CAS  Google Scholar 

  42. Luo Y, Luo C, Zhang S-W, Wei J, Lv W, Yang Q-H (2019) Porous carbons derived from carbonization of tissue papers for supercapacitors. J Mater Sci: Mater Electron 30(12):11250–11256

    CAS  Google Scholar 

  43. Puthusseri D, Aravindan V, Anothumakkool B, Kurungot S, Madhavi S, Ogale S (2014) From waste paper basket to solid state and Li-HEC ultracapacitor electrodes: a value added journey for shredded office paper. Small 10(21):4395–4402

    CAS  PubMed  Google Scholar 

  44. Liu D, Wang Y, Qiu Z, Li Y, Wang L, Zhao Y, Zhou J (2018) Porous carbons derived from waste printing paper for high rate performance supercapacitors in alkaline, acidic and neutral electrolytes. RSC Adv 8(8):3974–3981

    Article  CAS  Google Scholar 

  45. Gonçalves M, Castro CS, Boas IKV, Soler FC, de Pinto CE, Lavall RL, Carvalho WA (2019) Glycerin waste as sustainable precursor for activated carbon production: adsorption properties and application in supercapacitors. J Environ Chem Eng 7(3):103059

    Google Scholar 

  46. Li Y, Zhang D, He J, Wang Y, Zhang X, Zhang Y, Liu X, Wang K, Wang Y (2019) Hierarchical porous carbon nanosheet derived from waste engine oil for high-performance supercapacitor application. Sustain Energy Fuels 3(2):499–507

    Article  CAS  Google Scholar 

  47. Lu H, Zhao XS (2017) Biomass-derived carbon electrode materials for supercapacitors. Sustain Energy Fuels 1(6):1265–1281

    Article  CAS  Google Scholar 

  48. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1(4):552–565

    Article  CAS  Google Scholar 

  49. White RJ, Brun N, Budarin VL, Clark JH, Titirici M-M (2014) Always look on the “light” side of life: sustainable carbon aerogels. Chemsuschem 7(3):670–689

    Article  CAS  PubMed  Google Scholar 

  50. Sevilla M, Diez N, Ferrero GA, Fuertes AB (2019) Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Materials 18:356–365

    Article  Google Scholar 

  51. Fuertes AB, Ferrero GA, Diez N, Sevilla M (2018) A green route to high-surface area carbons by chemical activation of biomass-based products with sodium thiosulfate. ACS Sustain Chem Eng 6(12):16323–16331

    Article  CAS  Google Scholar 

  52. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Béguin F (2005) Electrochemical energy storage in ordered porous carbon materials. Carbon 43(6):1293–1302

    Article  CAS  Google Scholar 

  53. Sanchez-Sanchez A, Izquierdo MT, Ghanbaja J, Medjahdi G, Mathieu S, Celzard A, Fierro V (2017) Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes. J Power Sources 344:15–24

    Article  CAS  Google Scholar 

  54. Moussa G, Hajjar-Garreau S, Taberna P-L, Simon P, Matei Ghimbeu C (2018) Eco-friendly synthesis of nitrogen-doped mesoporous carbon for supercapacitor application. C 4(2):20

    Google Scholar 

  55. Herou S, Crespo Ribadeneyra M, Madhu R, Araullo-Peters V, Jensen A, Schlee P, Titirici M (2019) Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors. Green Chem 21(3):550–559

    Article  CAS  Google Scholar 

  56. Feng S, Li W, Wang J, Song Y, Elzatahry A, **a Y, Zhao D (2014) Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nanoscale 6(24):14657–14661

    Google Scholar 

  57. Herou S, Schlee P, Jorge AB, Titirici M (2018) Biomass-derived electrodes for flexible supercapacitors. Curr Opin Green Sustain Chem 9:18–24

    Article  Google Scholar 

  58. Seredych M, Chen R, Bandosz TJ (2012) Effects of the addition of graphite oxide to the precursor of a nanoporous carbon on the electrochemical performance of the resulting carbonaceous composites. Carbon 50:4144–4154

    Article  CAS  Google Scholar 

  59. Eliad L, Salitra G, Soffer A, Aurbach D (2001) Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J Phys Chem B 105(29):6880–6887

    Article  CAS  Google Scholar 

  60. Huang X, Kim S, Heo MS, Kim JE, Suh H, Kim I (2013) Easy synthesis of hierarchical carbon spheres with superior capacitive performance in supercapacitors. Langmuir 29(39):12266–12274. https://doi.org/10.1021/la4026969

    Article  CAS  PubMed  Google Scholar 

  61. Yamada H, Moriguchi I, Kudo T (2008) Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte. J Power Sources 175(1):651–656

    Article  CAS  Google Scholar 

  62. Everett DH, Powl JC (1976) Adsorption in slit-like and cylindrical micropores in the Henry’s law region. A model for the microporosity of carbons. J Chem Soc, Faraday Trans 1: Phys Chem Condensed Phases 72(0):619–636

    Google Scholar 

  63. Xu F, Cai R, Zeng Q, Zou C, Wu D, Li F, Lu X, Liang Y, Fu R (2011) Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J Mater Chem 21(6):1970–1976

    Article  CAS  Google Scholar 

  64. You B, Yang J, Sun Y, Su Q (2011) Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor. Chem Commun 47(45):12364–12366

    Article  CAS  Google Scholar 

  65. **ng W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44(2):216–224

    Article  CAS  Google Scholar 

  66. **a K, Gao Q, Jiang J, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13):1718–1726

    Article  CAS  Google Scholar 

  67. Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15):4351–4361

    Article  CAS  Google Scholar 

  68. Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12):2498–2507

    Article  Google Scholar 

  69. Yumak T, Yakaboylu GAGA, Oginni O, Singh K, Ciftyurek E, Sabolsky EMEM (2020) Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs. Colloids Surf, A 586:124150

    Article  CAS  Google Scholar 

  70. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541

    Article  CAS  PubMed  Google Scholar 

  71. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301

    Article  CAS  Google Scholar 

  72. Zhao Y, Liu M, Deng X, Miao L, Tripathi PK, Ma X, Zhu D, Xu Z, Hao Z, Gan L (2015) Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim Acta 153:448–455

    Article  CAS  Google Scholar 

  73. Yang W, Yang W, Kong L, Song A, Qin X, Shao G (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567

    Article  CAS  Google Scholar 

  74. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3(35):18154–18162

    Article  CAS  Google Scholar 

  75. Jiang J, Zhang L, Wang X, Holm N, Rajagopalan K, Chen F, Ma S (2013) Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochim Acta 113:481–489

    Article  CAS  Google Scholar 

  76. Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  CAS  Google Scholar 

  77. Cheng B-H, Tian K, Zeng RJ, Jiang H (2017) Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustain Energy Fuels 1(4):891–898

    Google Scholar 

  78. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sustain Energy Rev 42:1055–1064

    Article  CAS  Google Scholar 

  79. Simon P, Gogotsi Y (2009) Materials for electrochemical capacitors. In: Nanoscience and technology. Co-Published with Macmillan Publishers Ltd, UK., pp 320–329

    Google Scholar 

  80. Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1(6):1–17

    Article  Google Scholar 

  81. Sun W, Lipka SM, Swartz C, Williams D, Yang F (2016) Hemp-derived activated carbons for supercapacitors. Carbon 103:181–192

    Article  CAS  Google Scholar 

  82. He Y, Zhang Y, Li X, Lv Z, Wang X, Liu Z, Huang X (2018) Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim Acta 282:618–625

    Article  CAS  Google Scholar 

  83. Kwon KY, Youn J, Kim JH, Park Y, Jeon C, Kim BC, Kwon Y, Zhao X, Wang P, Sang BI, Lee J, Park HG, Chang HN, Hyeon T, Ha S, Jung H-T, Kim J (2010) Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosens Bioelectron 26(2):655–660

    Article  CAS  PubMed  Google Scholar 

  84. Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5(6):1401401. https://doi.org/10.1002/aenm.201401401

  85. **e X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML, Jellison J (2009) Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Biores Technol 100(5):1797–1802

    Article  CAS  Google Scholar 

  86. Zondlo JW, Velez MR (2007) Development of surface area and pore structure for activation of anthracite coal. Fuel Process Technol 88(4):369–374

    Article  CAS  Google Scholar 

  87. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53(21):5262–5298

    Article  CAS  Google Scholar 

  88. Schlee P, Herou S, Jervis R, Shearing PR, Brett DJL, Baker D, Hosseinaei O, Tomani P, Murshed MM, Li Y, Mostazo-López MJ, Cazorla-Amorós D, Sobrido ABJ, Titirici M-M (2019) Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chem Sci 10(10):2980–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Inagaki M (2000) New carbons-control of structure and functions. Elsevier

    Google Scholar 

  90. Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem 17(13):1390–1401

    Google Scholar 

  91. Ai Y, Lou Z, Li L, Chen S, Park HS, Wang ZM, Shen G (2016) Meters-long flexible CoNiO2-nanowires@carbon-fibers based wire-supercapacitors for wearable electronics. Adv Mater Technol 1(8):1600142

    Article  Google Scholar 

  92. Kim B-H, Yang KS, Woo H-G (2011) Preparation and electrochemical properties of carbon nanofiber composite dispersed with silver nanoparticles using polyacrylonitrile and β-cyclodextrin. J Nanosci Nanotechnol 11(8):7193–7197

    Article  CAS  PubMed  Google Scholar 

  93. He W, Wang C, Li H, Deng X, Xu X, Zhai T (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater 7(21):1700983

    Article  Google Scholar 

  94. Liu C, Wu X (2018) NiCo2S4 nanotube arrays grown on flexible carbon fibers as battery-type electrodes for asymmetric supercapacitors. Mater Res Bull 103:55–62

    Article  CAS  Google Scholar 

  95. Wang J, Chao D, Liu J, Li L, Lai L, Lin J, Shen Z (2014) Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7:151–160

    Article  CAS  Google Scholar 

  96. Ray RS, Sarma B, Jurovitzki AL, Misra M (2015) Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes. Chem Eng J 260:671–683

    Article  CAS  Google Scholar 

  97. Zhou W, Wu X-J, Cao X, Huang X, Tan C, Tian J, Liu H, Wang J, Zhang H (2013) Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ Sci 6(10):2921–2924. https://doi.org/10.1039/C3EE41572D

    Article  CAS  Google Scholar 

  98. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83(6):1216–1218.

    Google Scholar 

  99. Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47(13):2984–2992

    Article  CAS  Google Scholar 

  100. Kim B-H, Bui N-N, Yang K-S, dela Cruz ME, Ferraris JP (2009) Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. Bull Korean Chem Soc 30(9):1967–1972

    Google Scholar 

  101. Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, **e E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7(42):23515–23520

    Article  CAS  PubMed  Google Scholar 

  102. Kim C, Choi Y-O, Lee W-J, Yang K-S (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 50(2):883–887

    Article  CAS  Google Scholar 

  103. Kim C, Park S-H, Lee W-J, Yang K-S (2004) Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim Acta 50(2):877–881

    Article  CAS  Google Scholar 

  104. Kim C, Ngoc BTN, Yang KS, Kojima M, Kim YA, Kim YJ, Endo M, Yang SC (2007) Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv Mater 19(17):2341–2346

    Article  CAS  Google Scholar 

  105. Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H (2009) Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 19(18):2810–2816

    Article  CAS  Google Scholar 

  106. Ma C, Wu L, Dirican M, Cheng H, Li J, Song Y, Shi J, Zhang X (2021) Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors. Appl Surf Sci 537:147914

    Article  CAS  Google Scholar 

  107. Kim C (2005) Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J Power Sources 142(1):382–388

    Article  CAS  Google Scholar 

  108. Niu H, Zhang J, **e Z, Wang X, Lin T (2011) Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials. Carbon 49(7):2380–2388

    Article  CAS  Google Scholar 

  109. Chen L, Wen Z, Chen L, Wang W, Ai Q, Hou G, Li Y, Lou J, Ci L (2020) Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon 158:456–464

    Article  CAS  Google Scholar 

  110. Kim B-H, Yang KS, Woo H-G (2011) Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochem Commun 13(10):1042–1046

    Article  CAS  Google Scholar 

  111. Park S-J, Im S-H (2008) Electrochemical behaviors of PAN/Ag-based carbon nanofibers by electrospinning. Bull Korean Chem Soc 29(4):777–781

    Article  CAS  Google Scholar 

  112. Ju Y-W, Choi G-R, Jung H-R, Kim C, Yang K-S, Lee W-J (2007) A hydrous ruthenium oxide-carbon nanofibers composite electrodes prepared by electrospinning. J Electrochem Soc 154(3):A192

    Article  CAS  Google Scholar 

  113. Ju Y-W, Park S-H, Jung H-R, Lee W-J (2009) Electrospun activated carbon nanofibers electrodes based on polymer blends. J Electrochem Soc 156(6):A489

    Article  CAS  Google Scholar 

  114. Zhang X, Li H, Qin B, Wang Q, **ng X, Yang D, ** L, Cao Q (2019) Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors. J Mater Chem A 7(7):3298–3306

    Article  CAS  Google Scholar 

  115. ** Z, Yan X, Yu Y, Zhao G (2014) Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J Mater Chem A 2(30):11706–11715

    Article  CAS  Google Scholar 

  116. Huang Y, Peng L, Liu Y, Zhao G, Chen JY, Yu G (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 8(24):15205–15215

    Article  CAS  PubMed  Google Scholar 

  117. Mohammed AA, Chen C, Zhu Z (2019) Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. J Colloid Interface Sci 538:308–319

    Article  CAS  PubMed  Google Scholar 

  118. Zhang L, Yang X, Zhang F, Long G, Zhang T, Leng K, Zhang Y, Huang Y, Ma Y, Zhang M, Chen Y (2013) Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc 135(15):5921–5929

    Article  CAS  PubMed  Google Scholar 

  119. Gong Y, Wei Z, Wang J, Zhang P, Li H, Wang Y (2014) Design and fabrication of hierarchically porous carbon with a template-free method. Sci Rep 4:1–6

    Article  Google Scholar 

  120. Le Van K, Luong Thi Thu T (2019) Preparation of pore-size controllable activated carbon from rice husk using dual activating agent and its application in supercapacitor. J Chem

    Google Scholar 

  121. Prauchner MJ, Rodríguez-Reinoso F (2012) Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater 152:163–171

    Article  CAS  Google Scholar 

  122. Yumak T (2021) Surface characteristics and electrochemical properties of activated carbon obtained from different parts of Pinus pinaster. Colloids Surf, A 625:126982

    Article  CAS  Google Scholar 

  123. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725

    Article  CAS  Google Scholar 

  124. Li Y, Zhang X, Yang R, Li G, Hu C (2015) The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Adv 5(41):32626–32636

    Article  CAS  Google Scholar 

  125. Castro-Gutiérrez J, Celzard A, Fierro V (2020) Energy storage in supercapacitors: focus on tannin-derived carbon electrodes. Front Mater 7:217

    Article  Google Scholar 

  126. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539

    Article  CAS  PubMed  Google Scholar 

  127. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580

    Article  Google Scholar 

  128. Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5(2):5842–5850

    Article  CAS  Google Scholar 

  129. Jänes A, Thomberg T, Eskusson J, Lust E (2013) Fluoroethylene carbonate as co-solvent for propylene carbonate based electrical double layer capacitors. J Electrochem Soc 160(8):A1025

    Article  Google Scholar 

  130. Tian S, Qi L, Yoshio M, Wang H (2014) Tetramethylammonium difluoro(oxalato)borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors. J Power Sources 256:404–409

    Article  CAS  Google Scholar 

  131. Trócoli R, Morata A, Erinmwingbovo C, La Mantia F, Tarancón A (2021) Self-discharge in Li-ion aqueous batteries: a case study on LiMn2O4. Electrochim Acta 373:137847

    Article  Google Scholar 

  132. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R (2019) Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances 1(10):3807–3835

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhang L, Yang S, Chang J, Zhao D, Wang J, Yang C, Cao B (2020) A review of redox electrolytes for supercapacitors. Front Chem 8:413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rogers RD, Voth GA (2007) Ionic liquids. Acc Chem Res 40(11):1077–1078

    Article  CAS  PubMed  Google Scholar 

  135. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629

    Article  CAS  PubMed  Google Scholar 

  136. Demarconnay L, Calvo EG, Timperman L, Anouti M, Lemordant D, Raymundo-Piñero E, Arenillas A, Menéndez JA, Béguin F (2013) Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochim Acta 108:361–368

    Article  CAS  Google Scholar 

  137. Timperman L, Béguin F, Frackowiak E, Anouti M (2013) Comparative study of two protic ionic liquids as electrolyte for electrical double-layer capacitors. J Electrochem Soc 161(3):A228

    Article  Google Scholar 

  138. Lewandowski A, Galinski M (2007) Practical and theoretical limits for electrochemical double-layer capacitors. J Power Sources 173(2):822–828

    Article  CAS  Google Scholar 

  139. Lewandowski A, Olejniczak A, Galinski M, Stepniak I (2010) Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. J Power Sources 195(17):5814–5819

    Article  CAS  Google Scholar 

  140. Orita A, Kamijima K, Yoshida M (2010) Allyl-functionalized ionic liquids as electrolytes for electric double-layer capacitors. J Power Sources 195(21):7471–7479

    Article  CAS  Google Scholar 

  141. Francisco BE, Jones CM, Lee S-H, Stoldt CR (2012) Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte. Appl Phys Lett 100(10):103902

    Article  Google Scholar 

  142. Łatoszyńska AA, Żukowska GZ, Rutkowska IA, Taberna P-L, Simon P, Kulesza PJ, Wieczorek W (2015) Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors. J Power Sources 274:1147–1154

    Article  Google Scholar 

  143. Verma ML, Minakshi M, Singh NK (2014) Synthesis and characterization of solid polymer electrolyte based on activated carbon for solid state capacitor. Electrochim Acta 137:497–503

    Article  CAS  Google Scholar 

  144. Fan L-Q, Zhong J, Wu J-H, Lin J-M, Huang Y-F (2014) Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes. J Mater Chem A 2(24):9011–9014

    Article  CAS  Google Scholar 

  145. Chong MY, Numan A, Liew C-W, Ng HM, Ramesh K, Ramesh S (2018) Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. J Phys Chem Solids 117:194–203

    Article  CAS  Google Scholar 

  146. Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12(1):81–92

    Article  CAS  Google Scholar 

  147. Huang C-W, Wu C-A, Hou S-S, Kuo P-L, Hsieh C-T, Teng H (2012) Gel electrolyte derived from poly(ethylene glycol) blending poly(acrylonitrile) applicable to roll-to-roll assembly of electric double layer capacitors. Adv Func Mater 22(22):4677–4685

    Article  CAS  Google Scholar 

  148. Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19(2):277–285

    Article  CAS  Google Scholar 

  149. Ramasamy C, Palma del vel J, Anderson M (2014) An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent. J Solid State Electrochem 18(8):2217–2223

    Google Scholar 

  150. Ulihin AS, Mateyshina YuG, Uvarov NF (2013) All-solid-state asymmetric supercapacitors with solid composite electrolytes. Solid State Ionics 251:62–65

    Article  CAS  Google Scholar 

  151. Zhang Q, Scrafford K, Li M, Cao Z, **a Z, Ajayan PM, Wei B (2014) Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors. Nano Lett 14(4):1938–1943

    Article  CAS  PubMed  Google Scholar 

  152. Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6(8):496–500

    Article  CAS  PubMed  Google Scholar 

  153. Sankar KV, Kalai Selvan R (2015) Improved electrochemical performances of reduced graphene oxide based supercapacitor using redox additive electrolyte. Carbon 90:260–273

    Article  CAS  Google Scholar 

  154. Sun K, Feng E, Peng H, Ma G, Wu Y, Wang H, Lei Z (2015) A simple and high-performance supercapacitor based on nitrogen-doped porous carbon in redox-mediated sodium molybdate electrolyte. Electrochim Acta 158:361–367

    Article  CAS  Google Scholar 

  155. Wang C, ** Y, Wang M, Zhang C, Wang X, Yang Q, Li W, Hu C, Zhang D (2016) Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 28:115–123

    Article  Google Scholar 

  156. Dai S, Xu W, ** Y, Wang M, Gu X, Guo D, Hu C (2016) Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor. Nano Energy 19:363–372

    Article  CAS  Google Scholar 

  157. Vlad A, Singh N, Melinte S, Gohy J-F, Ajayan PM (2016) Carbon redox-polymer-gel hybrid supercapacitors. Scien Rep 6(1):22194

    Google Scholar 

  158. Mourad E, Coustan L, Lannelongue P, Zigah D, Mehdi A, Vioux A, Freunberger SA, Favier F, Fontaine O (2017) Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat Mater 16(4):446–453

    Article  CAS  PubMed  Google Scholar 

  159. Gao Z, Liu X, Chang J, Wu D, Xu F, Zhang L, Du W, Jiang K (2017) Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J Power Sources 337:25–35

    Article  CAS  Google Scholar 

  160. Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G (2010) Tailoring the pore alignment for rapid ion transport in microporous carbons. J Am Chem Soc 132(10):3252–3253

    Article  CAS  PubMed  Google Scholar 

  161. Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376

    Article  CAS  Google Scholar 

  162. He N, Yoo S, Meng J, Yildiz O, Bradford PD, Park S, Gao W (2017) Engineering biorefinery residues from loblolly pine for supercapacitor applications. Carbon 120:304–312

    Article  CAS  Google Scholar 

  163. **e X, Goodell B, Daniel G, Qian Y, Jellison J, Peterson M (2009) Carbonization of wood and nanostructures formed from the cell wall. Int Biodeterior Biodegradation 63(7):933–935

    Article  CAS  Google Scholar 

  164. Nan N (2016) Development of polyvinyl alcohol/wood-derived carbon thin films: influence of processing parameters on mechanical, thermal, and electrical properties. Ph.D., West Virginia University

    Google Scholar 

  165. DeVallance DB, **e X, Wang T, Wang J (2020) Advancements in thermochemical modification of wood for bioenergy and biomaterial applications. In: Mitra M, Nagchaudhuri A (eds) Practices and perspectives in sustainable bioenergy: a systems thinking approach. Springer India, pp 207–232

    Chapter  Google Scholar 

  166. Yakaboylu GA, Yumak T, Jiang C, Zondlo JW, Wang J, Sabolsky EM (2019) Preparation of highly porous carbon through slow oxidative torrefaction, pyrolysis, and chemical activation of lignocellulosic biomass for high-performance supercapacitors. Energy Fuels 33(9):9309–9329

    Article  CAS  Google Scholar 

  167. Phiri J, Dou J, Vuorinen T, Gane PAC, Maloney TC (2019) Highly porous willow wood-derived activated carbon for high-performance supercapacitor electrodes. ACS Omega 4(19):18108–18117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yakaboylu GA, Jiang C, Yumak T, Zondlo JW, Wang J, Sabolsky EM (2021) Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew Energy 163:276–287

    Article  CAS  Google Scholar 

  169. Jiang C, Yakaboylu GA, Yumak T, Zondlo JW, Sabolsky EM, Wang J (2020) Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renew Energy 155:38–52

    Article  CAS  Google Scholar 

  170. Wardrop AB (1971) Occurrence and formation in plants. Sarkanen, KV Lignins

    Google Scholar 

  171. Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500

    Article  CAS  PubMed  Google Scholar 

  172. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2009) Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 48(5):2583–2589

    Article  CAS  Google Scholar 

  173. Zhang T, Li X, Guo L (2017) Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics. Langmuir 33(42):11646–11657

    Article  CAS  PubMed  Google Scholar 

  174. Dorrestijn E, Laarhoven LJ, Arends IW, Mulder P (2000) The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrol 54(1):153–192

    Article  CAS  Google Scholar 

  175. Belgacem MN, Gandini A (2011) Monomers, polymers and composites from renewable resources. Elsevier

    Google Scholar 

  176. Gross GG (1977) Biosynthesis of lignin and related monomers. In: The structure, biosynthesis, and degradation of wood. Springer, pp 141–184

    Google Scholar 

  177. Adler E (1957) Structural elements of lignin. Ind Eng Chem 49(9):1377–1383

    Article  CAS  Google Scholar 

  178. Windeisen E, Wegener G (2012) 10.15—Lignin as building unit for polymers. In Möller KM (ed) Polymer science: a comprehensive reference. Elsevier, pp 255–265

    Google Scholar 

  179. Chen Y, Sarkanen S (2003) Macromolecular lignin replication: a mechanistic working hypothesis. Phytochem Rev 2(3):235–255

    Article  CAS  Google Scholar 

  180. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3(1–2):29–60

    Article  CAS  Google Scholar 

  181. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11(3):169–218

    Article  CAS  Google Scholar 

  182. Feldman D (2002) Lignin and its polyblends—a review. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Springer, US, pp 81–99

    Chapter  Google Scholar 

  183. Wang J, Manley R, St J, Feldman D (1992) Synthetic polymer-lignin copolymers and blends. Progr Polym Sci 17(4):611–646

    Google Scholar 

  184. Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33(2):259–276

    Article  CAS  Google Scholar 

  185. Meister JJ (2002) Modification of lignin*. J Macromol Sci, Part C: Polym Rev 42(2):235–289

    Article  Google Scholar 

  186. Saake B, Lehnen R (2007) Lignin. In: Ullmann’s encyclopedia of industrial chemistry. https://doi.org/10.1002/14356007.a15_305.pub3/full

  187. Sixta H, Potthast A, Krotschek AW (2008) Chemical pul** processes: sections 4.1–4.2. In: Handbook of pulp, pp 109–229

    Google Scholar 

  188. Vishtal AG, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6(3):3547–3568

    Article  Google Scholar 

  189. Gierer J, Lindeberg O, Noren I (1979) Alkaline delignification in the presence of anthraquinone/anthrahydroquinone. Holzforschung 33(6):213–214

    CAS  Google Scholar 

  190. Gierer J (1980) Chemical aspects of kraft pul**. Wood Sci Technol 14(4):241–266

    Article  CAS  Google Scholar 

  191. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym Degrad Stab 94(10):1632–1638

    Article  Google Scholar 

  192. Sannigrahi P, Ragauskas AJ, Miller SJ (2009) Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy Fuels 24(1):683–689

    Article  Google Scholar 

  193. Pye EK, Lora JH (1991) The AlcellTM process: a proven alternative to kraft pul**. Tappi J 74(3):113–118

    CAS  Google Scholar 

  194. Stockburger P (1993) An overview of near-commercial and commercial solvent-based pul** processes. Tappi J (USA)

    Google Scholar 

  195. Zhang M, Xu Y, Li K (2007) Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. J Appl Polym Sci 106(1):630–636

    Article  CAS  Google Scholar 

  196. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  197. Wang L, Sun F, Gao J, Pi X, Pei T, Qie Z, Zhao G, Qin Y (2018) A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials. J Taiwan Inst Chem Eng 91:588–596

    Article  CAS  Google Scholar 

  198. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280

    Article  CAS  Google Scholar 

  199. Mehta S, Jha S, Liang H (2020) Lignocellulose materials for supercapacitor and battery electrodes: a review. Renew Sustain Energy Rev 134:110345

    Article  CAS  Google Scholar 

  200. Rosas JM, Berenguer R, Valero-Romero MJ, Rodríguez-Mirasol J, Cordero T (2014) Preparation of different carbon materials by thermochemical conversion of ligin. Front Mater 1

    Google Scholar 

  201. Rodriguez-Mirasol J, Cordero T, Rodriguez JJ (1993) Activated carbons from carbon dioxide partial gasification of eucalyptus kraft lignin. Energy Fuels 7(1):133–138

    Article  CAS  Google Scholar 

  202. Rodríguez-Mirasol J, Cordero T, Rodríguez JJ (1993) Preparation and characterization of activated carbons from eucalyptus kraft lignin. Carbon 31(1):87–95

    Article  Google Scholar 

  203. Kijima M, Hirukawa T, Hanawa F, Hata T (2011) Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials. Biores Technol 102(10):6279–6285

    Article  CAS  Google Scholar 

  204. Zhang W, Zhao M, Liu R, Wang X, Lin H (2015) Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloids Surf, A 484:518–527

    Article  CAS  Google Scholar 

  205. Demir M, Tessema T-D, Farghaly AA, Nyankson E, Saraswat SK, Aksoy B, Islamoglu T, Collinson MM, El-Kaderi HM, Gupta RB (2018) Lignin-derived heteroatom-doped porous carbons for supercapacitor and CO2 capture applications. Int J Energy Res 42(8):2686–2700

    Article  CAS  Google Scholar 

  206. Zhang K, Liu M, Zhang T, Min X, Wang Z, Chai L, Shi Y (2019) High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J Mater Chem A 7(47):26838–26848

    Article  CAS  Google Scholar 

  207. Hu S, Zhang S, Pan N, Hsieh Y-L (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112

    Article  CAS  Google Scholar 

  208. Poursorkhabi V, Abdelwahab MA, Misra M, Khalil H, Gharabaghi B, Mohanty AK (2020) Processing, carbonization, and characterization of lignin based electrospun carbon fibers: a review. Front Energy Res 8(208)

    Google Scholar 

  209. Liu J, Wang PH, Li RY (1994) Continuous carbonization of polyacrylonitrile-based oxidized fibers: aspects on mechanical properties and morphological structure. J Appl Polym Sci 52(7):945–950

    Article  CAS  Google Scholar 

  210. Ago M, Borghei M, Haataja JS, Rojas OJ (2016) Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Adv 6(89):85802–85810

    Google Scholar 

  211. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920

    Article  CAS  Google Scholar 

  212. Braun JL, Holtman KM, Kadla JF (2005) Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon 43(2):385–394

    Article  CAS  Google Scholar 

  213. Sudo K, Shimizu K, Nakashima N, Yokoyama A (1993) A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J Appl Polym Sci 48(8):1485–1491

    Article  CAS  Google Scholar 

  214. Kadla JF, Kubo S (2003) Miscibility and hydrogen bonding in blends of poly (ethylene oxide) and kraft lignin. Macromolecules 36(20):7803–7811

    Article  CAS  Google Scholar 

  215. Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK, Grappe HA, Meyer HM, Dai S, Paranthaman MP, Naskar AK (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910

    Article  CAS  PubMed  Google Scholar 

  216. Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Wang Y, Wu X-F, Zhu Z, Fong H (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247:134–141

    Article  CAS  Google Scholar 

  217. Jayawickramage RAP, Ferraris JP (2019) High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology 30(15):155402

    Article  Google Scholar 

  218. Ho HC, Nguyen NA, Meek KM, Alonso DM, Hakim SH, Naskar AK (2018) A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes. Chemsuschem 11(17):2953–2959

    Article  CAS  PubMed  Google Scholar 

  219. Leguizamon S, Díaz-Orellana KP, Velez J, Thies MC, Roberts ME (2015) High charge-capacity polymer electrodes comprising alkali lignin from the Kraft process. J Mater Chem A 3(21):11330–11339

    Article  CAS  Google Scholar 

  220. Admassie S, Nilsson TY, Inganäs O (2014) Charge storage properties of biopolymer electrodes with (sub)tropical lignins. Phys Chem Chem Phys 16(45):24681–24684

    Article  CAS  PubMed  Google Scholar 

  221. Mahmood F, Zhang C, **e Y, Stalla D, Lin J, Wan C (2019) Transforming lignin into porous graphene via direct laser writing for solid-state supercapacitors. RSC Adv 9(39):22713–22720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Guo N, Li M, Sun X, Wang F, Yang R (2017) Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem 19(11):2595–2602

    Article  CAS  Google Scholar 

  223. Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195(24):7880–7903. https://doi.org/10.1016/j.jpowsour.2010.06.036

  224. Pang J, Zhang W, Zhang J, Cao G, Han M, Yang Y (2017) Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities. Green Chem 19(16):3916–3926

    Article  CAS  Google Scholar 

  225. Pang J, Zhang W, Zhang H, Zhang J, Zhang H, Cao G, Han M, Yang Y (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293

    Article  CAS  Google Scholar 

  226. Sudo K, Shimizu K (1992) A new carbon fiber from lignin. J Appl Polym Sci 44(1):127–134

    Article  CAS  Google Scholar 

  227. Thunga M, Chen K, Grewell D, Kessler MR (2014) Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 68:159–166

    Article  CAS  Google Scholar 

  228. Shen Q, Zhang T, Zhang W-X, Chen S, Mezgebe M (2011) Lignin-based activated carbon fibers and controllable pore size and properties. J Appl Polym Sci 121(2):989–994

    Article  CAS  Google Scholar 

  229. Singh M, Gupta A, Sundriyal S, Jain K, Dhakate SR (2021) Kraft lignin-derived free-standing carbon nanofibers mat for high-performance all-solid-state supercapacitor. Mater Chem Phys 264:124454

    Article  CAS  Google Scholar 

  230. Lei D, Li X-D, Seo M-K, Khil M-S, Kim H-Y, Kim B-S (2017) NiCo2O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer 132:31–40

    Article  CAS  Google Scholar 

  231. Ma C, Li Z, Li J, Fan Q, Wu L, Shi J, Song Y (2018) Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors. Appl Surf Sci 456:568–576

    Article  CAS  Google Scholar 

  232. Fierro V, Torné-Fernández V, Celzard A (2006) Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation. Microporous Mesoporous Mater 92(1):243–250

    Article  CAS  Google Scholar 

  233. Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J, Rodríguez JJ (1997) Development of porosity upon chemical activation of kraft lignin with ZnCl2. Ind Eng Chem Res 36(11):4832–4838

    Article  CAS  Google Scholar 

  234. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206

    Article  CAS  Google Scholar 

  235. Pell WG, Conway BE (2001) Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge. J Power Sources 96(1):57–67

    Article  CAS  Google Scholar 

  236. Ye Z, Wang F, Jia C, Shao Z (2018) Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. J Mater Sci 53(17):12374–12387

    Article  CAS  Google Scholar 

  237. **ang X, Liu E, Li L, Yang Y, Shen H, Huang Z, Tian Y (2011) Activated carbon prepared from polyaniline base by K2CO3 activation for application in supercapacitor electrodes. J Solid State Electrochem 15(3):579–585

    Article  CAS  Google Scholar 

  238. Gong Y, Li D, Fu Q, Pan C (2015) Influence of graphene microstructures on electrochemical performance for supercapacitors. Progr Nat Sci: Mater Int 25(5):379–385

    Article  CAS  Google Scholar 

  239. Liu X, Wang Y, Zhan L, Qiao W, Liang X, Ling L (2011) Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J Solid State Electrochem 15(2):413–419

    Article  CAS  Google Scholar 

  240. **ao K, Yang T, Liang J, Rawal A, Liu H, Fang R, Amal R, Xu H, Wang D-W (2021) Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte. Nat Commun 12(1):5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Xu Y, Tao Y, Zheng X, Ma H, Luo J, Kang F, Yang Q-H (2015) A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv Mater 27(48):8082–8087

    Article  CAS  PubMed  Google Scholar 

  242. Ma Y, Zhang X, Liang Z, Wang C, Sui Y, Zheng B, Ye Y, Ma W, Zhao Q, Qin C (2020) B/P/N/O co-doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors. Electrochim Acta 337:135800

    Article  CAS  Google Scholar 

  243. Zhang TF, **a QX, Wan Z, Yun JM, Wang QM, Kim KH (2019) Highly porous carbon nanofoams synthesized from gas-phase plasma for symmetric supercapacitors. Chem Eng J 360:1310–1319

    Article  CAS  Google Scholar 

  244. ** H, Feng X, Li J, Li M, **a Y, Yuan Y, Yang C, Dai B, Lin Z, Wang J, Lu J, Wang S (2019) Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew Chem 131(8):2419–2423

    Article  Google Scholar 

  245. Balducci A, Belanger D, Brousse T, Long JW, Sugimoto W (2017) Perspective—a guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J Electrochem Soc 164(7):A1487–A1488

    Article  CAS  Google Scholar 

  246. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Elsevier

    Google Scholar 

  247. Merlet C, Rotenberg B, Madden PA, Taberna P-L, Simon P, Gogotsi Y, Salanne M (2012) On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 11(4):306–310

    Article  CAS  PubMed  Google Scholar 

  248. Péan C, Merlet C, Rotenberg B, Madden PA, Taberna P-L, Daffos B, Salanne M, Simon P (2014) On the dynamics of charging in nanoporous carbon-based supercapacitors. ACS Nano 8(2):1576–1583

    Article  PubMed  Google Scholar 

  249. Merlet C, Péan C, Rotenberg B, Madden PA, Simon P, Salanne M (2013) Simulating supercapacitors: can we model electrodes as constant charge surfaces? J Phys Chem Lett 4(2):264–268

    Article  CAS  PubMed  Google Scholar 

  250. Merlet C, Péan C, Rotenberg B, Madden PA, Daffos B, Taberna P-L, Simon P, Salanne M (2013) Highly confined ions store charge more efficiently in supercapacitors. Nat Commun 4(1):2701

    Article  CAS  PubMed  Google Scholar 

  251. Pean C, Daffos B, Rotenberg B, Levitz P, Haefele M, Taberna P-L, Simon P, Salanne M (2015) Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J Am Chem Soc 137(39):12627–12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Burt R, Breitsprecher K, Daffos B, Taberna P-L, Simon P, Birkett G, Zhao XS, Holm C, Salanne M (2016) Capacitance of nanoporous carbon-based supercapacitors is a trade-off between the concentration and the separability of the ions. J Phys Chem Lett 7(19):4015–4021

    Article  CAS  PubMed  Google Scholar 

  253. Shim Y, Kim HJ (2010) Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. ACS Nano 4(4):2345–2355. https://doi.org/10.1021/nn901916m

    Article  CAS  PubMed  Google Scholar 

  254. Lian C, Jiang D, Liu H, Wu J (2016) A generic model for electric double layers in porous electrodes. J Phys Chem C 120(16):8704–8710

    Article  CAS  Google Scholar 

  255. Yang H, Zhang X, Yang J, Bo Z, Hu M, Yan J, Cen K (2017) Molecular origin of electric double-layer capacitance at multilayer graphene edges. J Phys Chem Lett 8(1):153–160

    Article  CAS  PubMed  Google Scholar 

  256. **ng L, Vatamanu J, Smith GD, Bedrov D (2012) Nanopatterning of electrode surfaces as a potential route to improve the energy density of electric double-layer capacitors: insight from molecular simulations. J Phys Chem Lett 3(9):1124–1129

    Article  CAS  PubMed  Google Scholar 

  257. Noh C, Jung Y (2019) Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations. Phys Chem Chem Phys 21(13):6790–6800

    Article  CAS  PubMed  Google Scholar 

  258. Paek E, Pak AJ, Kweon KE, Hwang GS (2013) On the origin of the enhanced supercapacitor performance of nitrogen-doped graphene. J Phys Chem C 117(11):5610–5616

    Article  CAS  Google Scholar 

  259. Kerisit S, Schwenzer B, Vijayakumar M (2014) Effects of oxygen-containing functional groups on supercapacitor performance. J Phys Chem Lett 5(13):2330–2334

    Article  CAS  PubMed  Google Scholar 

  260. Bi S, Banda H, Chen M, Niu L, Chen M, Wu T, Wang J, Wang R, Feng J, Chen T, Dincă M, Kornyshev AA, Feng G (2020) Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater 19(5):552–558

    Article  CAS  PubMed  Google Scholar 

  261. Bo Z, Li C, Yang H, Ostrikov K, Yan J, Cen K (2018) Design of supercapacitor electrodes using molecular dynamics simulations. Nano-Micro Letters 10(2):33

    Article  PubMed  PubMed Central  Google Scholar 

  262. Xu K, Shao H, Lin Z, Merlet C, Feng G, Zhu J, Simon P (2020) Computational insights into charge storage mechanisms of supercapacitors. Energy Environ Mater 3(3):235–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the European Commission for funding InnoRenew CoE (grant agreement #739574), under the H2020 Widespread-Teaming program, and the Republic of Slovenia (investment funding from the Republic of Slovenia and the European Union’s European Regional Development Fund) and infrastructural ARRS program IO-0035. E.S.E acknowledges Marie-Curie grant MSCA-IF-101031402 (2021-2023). T.Y is grateful to the Scientific and Technological Research Council of Turkey-TUBITAK for the financial support through the project number 218M915.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Esakkiammal Sudha Esakkimuthu or David De Vallance .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esakkimuthu, E.S., Ponnuchamy, V., Yumak, T., De Vallance, D. (2023). Lignin-Derived Carbonaceous Materials for Supercapacitor Applications. In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_4

Download citation

Publish with us

Policies and ethics

Navigation