Porous Graphene-Based Materials for Enhanced Adsorption Towards Emerging Micropollutants (EMs)

  • Chapter
  • First Online:
Handbook of Porous Carbon Materials

Abstract

Contaminated wastewater with emerging micropollutants (EMs) has become a pressing issue that affects humankind which requires immediate global attention. Recently, graphene composites have been explored as potential adsorbents in the remediation of various emerging micropollutants ascribed to their excellent physicochemical and textural properties. Numerous processes such as do**, grafting, and chemical treatment have been utilized to modify the graphene composite to enhance its adsorption. Since the past decade, ample peer-reviewed articles have been published on the adsorption of various classes of micropollutants using graphene composite materials. This chapter’s primary objective is to compile the most recent findings on the use of graphene composites for the adsorption of specific EMs and their detailed mechanism thereof. Additionally, we discussed the feasibility of their operational parameters, regeneration, and continuous use in actual wastewater treatment. We further suggest potential research directions to address existing knowledge gaps, needs, and challenges concerning the adsorption of micropollutants by graphene composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenfeld PE, Feng LGH (2011) Emerging contaminants. In: Risks of hazardous wastes. Elsevier, pp 215–222

    Google Scholar 

  2. Chavoshani A, Hashemi M, Mehdi Amin M, Ameta SC (2020) Introduction. In: Micropollutants and challenges. Elsevier, pp 1–33

    Google Scholar 

  3. Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kümmerer K (2011) Emerging contaminants. In: Treatise on water science. Elsevier, pp 69–87

    Google Scholar 

  5. Lei M et al (2015) Overview of emerging contaminants and associated human health effects. Biomed Res Int 2015:1–12

    Article  Google Scholar 

  6. Pereira LC et al (2015) A perspective on the potential risks of emerging contaminants to human and environmental health. Environ Sci Pollut Res 22:13800–13823

    Article  CAS  Google Scholar 

  7. Sanchez W, Egea E (2018) Health and environmental risks associated with emerging pollutants and novel green processes. Environ Sci Pollut Res 25:6085–6086

    Article  Google Scholar 

  8. Anjum M et al (2016) Remediation of wastewater using various nano-materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

    Article  Google Scholar 

  9. Lu H et al (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:1–10

    Google Scholar 

  10. Yaqoob AA, Parveen T, Umar K, Mohamad Ibrahim MN (2020) Role of nanomaterials in the treatment of wastewater: a review. Water 12:495

    Article  CAS  Google Scholar 

  11. Adeleye AS et al (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  12. Lau GE et al (2020) Eco-friendly photocatalysts for degradation of dyes. Catalysts 10:1129

    Article  CAS  Google Scholar 

  13. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhang H, Tang Y (2017) Graphene-based materials and their potential applications. In: Hybrid polymer composite materials. Elsevier, pp 267–287

    Google Scholar 

  15. Singh V et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  16. Alvarado YEA, de la Cruz MTR, Hernández‐Cocoletzi H, Cocoletzi GH (2019) Graphene structures: from preparations to applications. In: Handbook of graphene. Wiley, pp 323–357

    Google Scholar 

  17. Geim AK (2009) Graphene: status and prospects. Science 324(80):1530–1534

    Google Scholar 

  18. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  PubMed  Google Scholar 

  19. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  20. Mohan VB, Lau K, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos Part B Eng 142:200–220

    Article  CAS  Google Scholar 

  21. Wu X, Mu F, Wang Y, Zhao H (2018) Graphene and graphene-based nanomaterials for DNA detection: a review. Molecules 23:2050

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kumar N et al (2021) Top-down synthesis of graphene: a comprehensive review. FlatChem 27:100224

    Article  CAS  Google Scholar 

  23. Singh G et al (2021) Sources, fate, and impact of pharmaceutical and personal care products in the environment and their different treatment technologies. In: Microbe mediated remediation of environmental contaminants. Elsevier, pp 391–407

    Google Scholar 

  24. Zheng ALT, Abdullah CAC, Chung ELT et al (2022) Recent progress in visible light-doped ZnO photocatalyst for pollution control. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-022-04354-x

  25. Nageeb M (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. In: Organic pollutants—monitoring, risk and treatment. InTech

    Google Scholar 

  26. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40

    Google Scholar 

  27. Sophia AC, Lima EC (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf 150:1–17

    Article  Google Scholar 

  28. Zheng ALT, Andou Y (2021) Detection and remediation of bisphenol A (BPA) using graphene-based materials: mini-review. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03512-x

    Article  Google Scholar 

  29. Dulio V et al (2018) Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ Sci Eur 30:5

    Article  PubMed Central  PubMed  Google Scholar 

  30. Naidu R, Arias Espana VA, Liu Y, Jit J (2016) Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere 154:350–357

    Article  CAS  PubMed  Google Scholar 

  31. Khan FSA et al (2021) A comprehensive review on micropollutants removal using carbon nanotubes-based adsorbents and membranes. J Environ Chem Eng 9:106647

    Article  CAS  Google Scholar 

  32. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275

    Article  CAS  PubMed  Google Scholar 

  33. Patel M et al (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673

    Article  CAS  PubMed  Google Scholar 

  34. Zheng ALT et al (2021) Accessing the anti-microbial activity of cyclic peptide immobilized on reduced graphene oxide. Mater Lett 304

    Google Scholar 

  35. Rodriguez-Mozaz S et al (2020) Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int 140:105733

    Article  CAS  PubMed  Google Scholar 

  36. Fan X et al (2020) Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: the benefit of isotope dilution. Front Environ Sci Eng 14:8

    Article  CAS  Google Scholar 

  37. Campos-Mañas MC et al (2019) Determination of pesticide levels in wastewater from an agro-food industry: target, suspect and transformation product analysis. Chemosphere 232:152–163

    Article  PubMed  Google Scholar 

  38. Kyzas GZ, Deliyanni EA, Bikiaris DN, Mitropoulos AC (2018) Graphene composites as dye adsorbents: review. Chem Eng Res Des 129:75–88

    Article  CAS  Google Scholar 

  39. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71

    Article  CAS  Google Scholar 

  40. Lee XJ et al (2019) Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng 98:163–180

    Article  CAS  Google Scholar 

  41. Wu Y, Wang S, Komvopoulos K (2020) A review of graphene synthesis by indirect and direct deposition methods. J Mater Res 35:76–89

    Article  CAS  Google Scholar 

  42. Lee HC et al (2017) Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv 7:15644–15693

    Article  CAS  Google Scholar 

  43. Aïssa B, Memon NK, Ali A, Khraisheh MK (2015) Recent progress in the growth and applications of graphene as a smart material: a review. Front Mater 2

    Google Scholar 

  44. Tang L et al (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mater Chem 22:5676

    Article  CAS  Google Scholar 

  45. Terzopoulou Z, Kyzas G, Bikiaris D (2015) Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials (Basel) 8:652–683

    Article  CAS  PubMed  Google Scholar 

  46. Abu-Nada A, McKay G, Abdala A (2020) Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials 10:595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yang K et al (2018) Application of graphene-based materials in water purification: from the nanoscale to specific devices. Environ Sci Nano 5:1264–1297

    Article  CAS  Google Scholar 

  48. Carrales-Alvarado DH et al (2020) Effect of surface area and physical–chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution. Chem Eng J 402:126155

    Article  CAS  Google Scholar 

  49. Yang K, Chen B, Zhu L (2015) Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Sci Rep 5:11641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Liu F et al (2014) Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ Sci Technol 48:13197–13206

    Article  CAS  PubMed  Google Scholar 

  51. Li J, Östling M (2013) Prevention of graphene restacking for performance boost of supercapacitors—a review. Curr Comput-Aided Drug Des 3:163–190

    CAS  Google Scholar 

  52. Balasubramani K, Sivarajasekar N, Naushad M (2020) Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: equilibrium and statistical modelling. J Mol Liq 301:112426

    Article  CAS  Google Scholar 

  53. Gao Y et al (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368:540–546

    Article  CAS  PubMed  Google Scholar 

  54. Ai Y et al (2019) Insights into the adsorption mechanism and dynamic behavior of tetracycline antibiotics on reduced graphene oxide (RGO) and graphene oxide (GO) materials. Environ Sci Nano 6:3336–3348

    Article  CAS  Google Scholar 

  55. Rosli FA et al (2021) Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. R Soc Open Sci 8:201076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wang H et al (2021) Emerging role of graphene oxide as sorbent for pesticides adsorption: experimental observations analyzed by molecular modeling. J Mater Sci Technol 63:192–202

    Article  CAS  Google Scholar 

  57. Foschi M et al (2021) Experimental design and response surface methodology applied to graphene oxide reduction for adsorption of triazine herbicides. ACS Omega 6:16943–16954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Liu R, Zhu X, Chen B (2017) A new insight of graphene oxide-Fe(III) complex photochemical behaviors under visible light irradiation. Sci Rep 7:40711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Gunes B et al (2021) Activated graphene oxide-calcium alginate beads for adsorption of methylene blue and pharmaceuticals. Materials (Basel) 14:6343

    Article  CAS  PubMed  Google Scholar 

  60. Fei Y, Li Y, Han S, Ma J (2016) Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J Colloid Interface Sci 484:196–204

    Article  CAS  PubMed  Google Scholar 

  61. Zhu H, Chen T, Liu J, Li D (2018) Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv 8:2616–2621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wang X et al (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098

    Article  CAS  PubMed  Google Scholar 

  63. Li M et al (2020) One-step generation of S and N co-doped reduced graphene oxide for high-efficiency adsorption towards methylene blue. RSC Adv 10:37757–37765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wang X, Qin Y, Zhu L, Tang H (2015) Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: synergistic effect between adsorption and catalysis. Environ Sci Technol 49:6855–6864

    Article  CAS  PubMed  Google Scholar 

  65. Perry RH (2021) Theoretical study of the adsorption of analgesic environmental pollutants on pristine and nitrogen-doped graphene nanosheets. Phys Chem Chem Phys 23:1221–1233

    Article  CAS  PubMed  Google Scholar 

  66. Dobrota AS et al (2020) Altering the reactivity of pristine, N- and P-doped graphene by strain engineering: a DFT view on energy related aspects. Appl Surf Sci 514:145937

    Article  CAS  Google Scholar 

  67. Pham TT et al (2021) How do the do** concentrations of N and B in graphene modify the water adsorption? RSC Adv 11:19560–19568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Yang G et al (2018) Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Res Lett 13:146

    Article  PubMed Central  PubMed  Google Scholar 

  69. El Meragawi S et al (2020) Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J Mater Chem A 8:24800–24811

    Article  Google Scholar 

  70. Valizadeh S, Naji L, Karimi M (2021) Controlling interlayer spacing of graphene oxide membrane in aqueous media using a biocompatible heterobifunctional crosslinker for Penicillin-G Procaine removal. Sep Purif Technol 263:118392

    Article  CAS  Google Scholar 

  71. Ali N et al (2021) Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. Chemosphere 284:131279

    Article  CAS  PubMed  Google Scholar 

  72. Nawaz S et al (2021) Mitigation of environmentally hazardous pollutants by magnetically responsive composite materials. Chemosphere 276:130241

    Article  CAS  PubMed  Google Scholar 

  73. Huízar-Félix A et al (2019) Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles. Nanomaterials 9:313

    Article  PubMed Central  PubMed  Google Scholar 

  74. Elanchezhiyan SS et al (2020) Synthesis and characterization of novel magnetic Zr-MnFe2O4@rGO nanohybrid for efficient removal of PFOA and PFOS from aqueous solutions. Appl Surf Sci 528:146579

    Article  CAS  Google Scholar 

  75. Bao J et al (2018) Adsorption of tetracycline with reduced graphene oxide decorated with MnFe2O4 nanoparticles. Nanoscale Res Lett 13:396

    Article  PubMed Central  PubMed  Google Scholar 

  76. Khalil AME et al (2021) Performance evaluation of porous graphene as filter media for the removal of pharmaceutical/emerging contaminants from water and wastewater. Nanomaterials 11:79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zheng ALT, Boonyuen S, Ohno T, Andou Y (2021) Accessing effects of aliphatic dicarboxylic acid towards the physical and chemical changes in low temperature hydrothermally reduced graphene hydrogel. J Porous Mater 28:1291–1300

    Article  CAS  Google Scholar 

  78. Zheng ALT, Boonyuen S, Ohno T, Andou Y (2021) Hydrothermally reduced graphene hydrogel intercalated with divalent ions for dye adsorption studies. Processes 9:169

    Article  CAS  Google Scholar 

  79. Zheng ALT et al (2022) Cu2O/TiO2 decorated on cellulose nanofiber/reduced graphene hydrogel for enhanced photocatalytic activity and its antibacterial applications. Chemosphere 286:131731

    Article  CAS  PubMed  Google Scholar 

  80. Zheng ALT et al (2021) Design of reduced graphene hydrogel with alkylamine surface functionalization through immersion/agitation method and its adsorption mechanism. J Mol Struct:131008

    Google Scholar 

  81. Zheng ALT, Phromsatit T, Boonyuen S, Andou Y (2020) Synthesis of silver nanoparticles/porphyrin/reduced graphene oxide hydrogel as dye adsorbent for wastewater treatment. FlatChem:100174

    Google Scholar 

  82. Sheng K, Xu Y, Li C, Shi G (2011) High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater 26:9–15

    Article  CAS  Google Scholar 

  83. Lescano MI et al (2018) Development and characterisation of self-assembled graphene hydrogel-based anodes for bioelectrochemical systems. RSC Adv 8:26755–26763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Thomas T, Agarwal A (2021) A facile and scalable approach in the fabrication of tailored 3d graphene foam via freeze drying. Materials (Basel) 14:864

    Article  CAS  PubMed  Google Scholar 

  85. Zheng ALT, Ohno T, Andou Y (2022) Recent progress in photocatalytic efficiency of hybrid three-dimensional (3D) graphene architectures for pollution remediation. Top Catal. https://doi.org/10.1007/s11244-022-01610-9

  86. Fu H, Huang J, Gray K (2021) Crumpled graphene balls adsorb micropollutants from water selectively and rapidly. Carbon N Y 183:958–969

    Article  CAS  Google Scholar 

  87. Fraga TJM, Carvalho MN, Ghislandi MG, da Motta Sobrinho MA (2019) Functionalized graphene-based materials as innovative adsorbents of organic pollutants: a concise overview. Brazilian J Chem Eng 36:1–31

    Google Scholar 

  88. Wang W et al (2019) Multi-heteroatom doped graphene-like carbon nanospheres with 3D inverse opal structure: a promising bisphenol-A remediation material. Environ Sci Nano 6:809–819

    Article  CAS  Google Scholar 

  89. Yang Z et al (2021) Preparation of β-cyclodextrin/graphene oxide and its adsorption properties for methylene blue. Colloids Surfaces B Biointerfaces 200:111605

    Article  CAS  PubMed  Google Scholar 

  90. Tian H et al (2020) Synthesis of graphene oxide-supported β-cyclodextrin adsorbent for removal of p-nitrophenol. Water, Air, Soil Pollut 231:495

    Article  CAS  Google Scholar 

  91. Wang D et al (2015) Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin. Appl Surf Sci 329:197–205

    Article  CAS  Google Scholar 

  92. Nie Z-J et al (2021) Cyclodextrin self-assembled graphene oxide aerogel microspheres as broad-spectrum adsorbent for removing dyes and organic micropollutants from water. J Environ Chem Eng 9:104749

    Article  CAS  Google Scholar 

  93. Lata S, Singh PK, Samadder SR (2015) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci Technol 12:1461–1478

    Article  CAS  Google Scholar 

  94. Zhu C et al (2021) Optimized pore configuration in solar-driven regenerable adsorbent for organic micro-pollutants removal. Chem Eng J 426:131244

    Article  CAS  Google Scholar 

  95. Xu J et al (2022) A nanocubicle-like 3D adsorbent fabricated by in situ growth of 2D heterostructures for removal of aromatic contaminants in water. J Hazard Mater 423:127004

    Article  CAS  PubMed  Google Scholar 

  96. Sun Y et al (2020) Amino-functionalized alginate/graphene double-network hydrogel beads for emerging contaminant removal from aqueous solution. Chemosphere 241:125110

    Article  CAS  PubMed  Google Scholar 

  97. Lv X, Li S (2020) Graphene oxide-crospolyvinylpyrrolidone hybrid microspheres for the efficient adsorption of 2,4,6-Trichlorophenol. ACS Omega 5:18862–18871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Kovtun A et al (2020) Multifunctional graphene oxide/biopolymer composite aerogels for microcontaminants removal from drinking water. Chemosphere 259:127501

    Article  CAS  Google Scholar 

  99. Yuan F, Yue L, Zhao H, Wu H (2020) Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide. Water Sci Technol 81:2163–2175

    Article  CAS  PubMed  Google Scholar 

  100. Miao J et al (2019) The adsorption performance of tetracyclines on magnetic graphene oxide:a novel antibiotics absorbent. Appl Surf Sci 475:549–558

    Article  CAS  Google Scholar 

  101. Phatthanakittiphong T, Seo G (2016) Characteristic evaluation of graphene oxide for Bisphenol A adsorption in aqueous solution. Nanomaterials 6:128

    Article  PubMed Central  PubMed  Google Scholar 

  102. Zhu S et al (2017) Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179:20–28

    Article  PubMed  Google Scholar 

  103. Yadav S, Goel N, Kumar V, Singhal S (2019) Graphene oxide as proficient adsorbent for the removal of harmful pesticides: comprehensive experimental cum DFT investigations. Anal Chem Lett 9:291–310

    Article  CAS  Google Scholar 

  104. Li Y et al (2020) Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide. J Hazard Mater 386:121942

    Article  CAS  PubMed  Google Scholar 

  105. Ciğeroğlu Z, Özdemir OK, Şahin S, Haşimoğlu A (2020) Naproxen adsorption onto graphene oxide nanopowders: equilibrium, kinetic, and thermodynamic studies. Water, Air, Soil Pollut 231:101

    Article  Google Scholar 

  106. Zhong J et al (2020) Removal of sulfadiazine using 3d interconnected petal-like magnetic reduced graphene oxide (MrGO) nanocomposites. Water 12:1933

    Article  CAS  Google Scholar 

  107. Wang F et al (2017) Sorption behavior of bisphenol A and triclosan by graphene: comparison with activated carbon. ACS Omega 2:5378–5384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Jauris IM et al (2017) Adsorption of anti-inflammatory nimesulide by graphene materials: a combined theoretical and experimental study. Phys Chem Chem Phys 19:22099–22110

    Article  CAS  PubMed  Google Scholar 

  109. Umbreen N et al (2018) Self-assembled three-dimensional reduced graphene oxide-based hydrogel for highly efficient and facile removal of pharmaceutical compounds from aqueous solution. J Colloid Interface Sci 527:356–367

    Article  CAS  PubMed  Google Scholar 

  110. Han L et al (2022) Graphene-boron nitride composite aerogel: a high efficiency adsorbent for ciprofloxacin removal from water. Sep Purif Technol 278:119605

    Article  CAS  Google Scholar 

  111. Adeola AO, de Lange J, Forbes PBC (2021) Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: Kinetic, equilibrium, thermodynamic and computational studies. Appl Surf Sci Adv 6:100157

    Article  Google Scholar 

  112. Bhattacharya S et al (2020) Removal of aqueous carbamazepine using graphene oxide nanoplatelets: process modelling and optimization. Sustain Environ Res 30:17

    Article  CAS  Google Scholar 

  113. da Alves DCS, Healy B, Yu T, Breslin CB (2021) Graphene-based materials immobilized within chitosan: applications as adsorbents for the removal of aquatic pollutants. Materials (Basel) 14:3655

    Google Scholar 

  114. Dong S et al (2018) Bioaccumulation of 14 C-labeled graphene in an aquatic food chain through direct uptake or trophic transfer. Environ Sci Technol 52:541–549

    Article  CAS  PubMed  Google Scholar 

  115. Lu K et al (2017) Biological uptake, distribution, and depuration of radio-labeled graphene in adult zebrafish: effects of graphene size and natural organic matter. ACS Nano 11:2872–2885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Wang Y et al (2018) Exploring adsorption of neutral aromatic pollutants onto graphene nanomaterials via molecular dynamics simulations and theoretical linear solvation energy relationships. Environ Sci Nano 5:2117–2128

    Article  CAS  Google Scholar 

  117. Taheri Z, Nakhaei Pour A (2021) Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation. J Mol Model 27:59

    Article  CAS  PubMed  Google Scholar 

  118. Tanis I, Kostarellou E, Karatasos K (2021) Molecular dynamics simulations of hyperbranched poly(ethylene imine)–graphene oxide nanocomposites as dye adsorbents for water purification. Phys Chem Chem Phys 23:22874–22884

    Article  CAS  PubMed  Google Scholar 

  119. Wang J et al (2021) Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Adv Colloid Interface Sci 289:102360

    Article  CAS  PubMed  Google Scholar 

  120. Daud M et al (2019) A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)—containing hybrids as promising adsorbents for dyes removal. J Mol Liq 288:110989

    Article  CAS  Google Scholar 

  121. Yusuf M et al (2015) Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. RSC Adv 5:50392–50420

    Article  CAS  Google Scholar 

  122. Younas F et al (2021) Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications. Water 13:215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Alvin Lim Teik Zheng would like to acknowledge Kyushu Institute of Technology, for the Post-Doctoral Fellowship awarded to him. The authors would also like to thank Mr. Tithiphong Sukheeket for the artwork design.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Andou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, A.L.T., Boonyuen, S., Andou, Y. (2023). Porous Graphene-Based Materials for Enhanced Adsorption Towards Emerging Micropollutants (EMs). In: Grace, A.N., Sonar, P., Bhardwaj, P., Chakravorty, A. (eds) Handbook of Porous Carbon Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-7188-4_20

Download citation

Publish with us

Policies and ethics

Navigation