Local Metabolic Factors and Vasoactivity

  • Chapter
  • First Online:
Biology of Vascular Smooth Muscle
  • 256 Accesses

Abstract

The regulation of vasoreactivity by local metabolites is a key mechanism to ensure adequate blood flow so that adequate O2 is supplied for the needed tissues and metabolic wastes are timely removed. Many metabolic factors may participate in the regulation of vascular activity such as local Po2, Pco2, pH, K+, adenosine, and lactate. These metabolic factors affect vasoactivity either by directly acting on vascular smooth muscle cells (VSMCs) and/or by acting on the endothelial cells, resulting in altered cytosolic Ca2+ level and Ca2+-sensitivity of myofilaments in VSMCs and thus altered vasoactivity. For a metabolic factor to be involved it must be released in a sufficient amount from the tissues and diffuse to the nearby vasculature. Since the formation and release profile of metabolic factors vary under different conditions their relative importance in affecting vasoactivity varies under different conditions. Under most conditions, there appears no single factor is indispensable for the metabolic regulation of vasoactivity. More likely this process is regulated by multiple factors in a redundant manner. Such a concept is exemplified in exercise-induced vasodilatation in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalkjaer C, Boedtkjer E, Choi I, Lee S (2014) Cation-coupled bicarbonate transporters. Compr Physiol 4:1605–1637

    Article  Google Scholar 

  • Aalkjaer C, Hughes A (1991) Chloride and bicarbonate transport in rat resistance arteries. J Physiol 436:57–73

    Article  CAS  Google Scholar 

  • Al-Samir S, Prill M, Supuran CT, Gros G, Endeward V (2021) CO2 permeability of the rat erythrocyte membrane and its inhibition. J Enzyme Inhib Med Chem 36:1602–1606

    Article  Google Scholar 

  • Ballard HJ (2014) ATP and adenosine in the regulation of skeletal muscle blood flow during exercise. Sheng Li Xue Bao 66:67–78

    CAS  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Phys 204:317–322

    Article  CAS  Google Scholar 

  • Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD (2010) Contribution of adenosine A2A and A2B receptors to ischemic coronary dilation: role of KV and KATP channels. Microcirculation 17:600–607

    Article  CAS  Google Scholar 

  • Boedtkjer E (2018) Acid-base regulation and sensing: accelerators and brakes in metabolic regulation of cerebrovascular tone. J Cereb Blood Flow Metab 38:588–602

    Article  CAS  Google Scholar 

  • Boedtkjer E, Aalkjaer C (2012) Intracellular pH in the resistance vasculature: regulation and functional implications. J Vasc Res 49:479–496

    Article  CAS  Google Scholar 

  • Boedtkjer E, Damkier HH, Aalkjaer C (2012) NHE1 knockout reduces blood pressure and arterial media/lumen ratio with no effect on resting pHi in the vascular wall. J Physiol 590:1895–1906

    Article  CAS  Google Scholar 

  • Boedtkjer E, Hansen KB, Boedtkjer DMB, Aalkjaer C, Boron WF (2016) Extracellular HCO3− is sensed by mouse cerebral arteries: regulation of tone by receptor protein tyrosine phosphatase γ. J Cereb Blood Flow Metab 36:965–980

    Article  CAS  Google Scholar 

  • Boedtkjer E, Praetorius J, Aalkjaer C (2006) NBCn1 (slc4a7) mediates the Na+-dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 98:515–523

    Article  CAS  Google Scholar 

  • Boedtkjer E, Praetorius J, Fuchtbauer EM, Aalkjaer C (2008) Antibody-independent localization of the electroneutral Na+-HCO3− cotransporter NBCn1 (slc4a7) in mice. Am J Physiol Cell Physiol 294:C591–C603

    Article  CAS  Google Scholar 

  • Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC, Simonsen U, Füchtbauer EM, Aalkjaer C (2011) Disruption of Na+,HCO3− cotransporter NBCn1 (slc4a7) inhibits NO-mediated vasorelaxation, smooth muscle Ca2+ sensitivity, and hypertension development in mice. Circulation 124:1819–1829

    Article  CAS  Google Scholar 

  • Brooks GA (2016) Energy flux, lactate shuttling, mitochondrial dynamics, and hypoxia. Adv Exp Med Biol 903:439–455

    Article  CAS  Google Scholar 

  • Brooks GA (2018) Science and translation of lactate shuttle theory. Cell Metab 27:757–785

    Article  CAS  Google Scholar 

  • Brooks GA (2020) The tortuous path of lactate shuttle discovery: from cinders and boards to the lab and ICU. J Sport Health Sci 9:446–460

    Article  Google Scholar 

  • Brooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP (2022) Lactate in contemporary biology: a phoenix risen. J Physiol 600:1229–1251

    Article  CAS  Google Scholar 

  • Brosius FC III, Pisoni RL, Cao X, Deshmukh G, Yannoukakos D, Stuart-Tilley AK, Haller C, Alper SL (1997) AE anion exchanger mRNA and protein expression in vascular smooth muscle cells, aorta, and renal microvessels. Am J Phys 273:F1039–F1047

    CAS  Google Scholar 

  • Buckler KJ (2015) TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 467:101310–101325

    Article  Google Scholar 

  • Calderón-Sánchez E, Fernández-Tenorio M, Ordóñez A, López-Barneo J, Ureña J (2009) Hypoxia inhibits vasoconstriction induced by metabotropic Ca2+ channel-induced Ca2+ release in mammalian coronary arteries. Cardiovasc Res 82:115–124

    Article  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61

    Article  CAS  Google Scholar 

  • Celaya-Alcala JT, Lee GV, Smith AF, Li B, Sakadžić S, Boas DA, Secomb TW (2021) Simulation of oxygen transport and estimation of tissue perfusion in extensive microvascular networks: application to cerebral cortex. J Cereb Blood Flow Metab 41:656–669

    Article  CAS  Google Scholar 

  • Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets--what are the challenges? Nat Rev Drug Discov 12:265–286

    Article  CAS  Google Scholar 

  • Chen YL, Wolin MS, Messina EJ (1996) Evidence for cGMP mediation of skeletal muscle arteriolar dilation to lactate. J Appl Physiol 81:349–354

    Article  CAS  Google Scholar 

  • Cheng B, Essackjee HC, Ballard HJ (2000) Evidence for control of adenosine metabolism in rat oxidative skeletal muscle by changes in pH. J Physiol 522:467–477

    Article  CAS  Google Scholar 

  • Clanton T, Hogan M, Gladden L (2013) Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 3:1135–1190

    Article  CAS  Google Scholar 

  • Coburn RF, Moreland S, Moreland RS, Baron CB (1992) Rate-limiting energy-dependent steps controlling oxidative metabolism-contraction coupling in rabbit aorta. J Physiol 448:473–492

    Article  CAS  Google Scholar 

  • Damkier HH, Nielsen S, Praetorius J (2006) An anti-NH2-terminal antibody localizes NBCn1 to heart endothelia and skeletal and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 290:H172–H180

    Article  CAS  Google Scholar 

  • Detar R, Bohr DF (1968) Oxygen and vascular smooth muscle contraction. Am J Phys 214:241–244

    Article  CAS  Google Scholar 

  • Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W (2012) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801

    Article  CAS  Google Scholar 

  • Dora KA (2016) Endothelial-smooth muscle cell interactions in the regulation of vascular tone in skeletal muscle. Microcirculation 23:626–630

    Article  CAS  Google Scholar 

  • Dominelli PB, Wiggins CC, Roy TK, Secomb TW, Curry TB, Joyner MJ (2021) Oxygen cascade during exercise in health and disease. Mayo Clin Proc 96:1017–1032

    Article  CAS  Google Scholar 

  • Dou D, Zheng X, Ying L, Ye L, Gao Y (2013) Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation. J Cardiovasc Pharmacol 62:1–5

    Article  CAS  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  Google Scholar 

  • Duncker DJ, vanZon NS, Altman JD, Pavek TJ, Bache RJ (1993) Role of K+ATP channels in coronary vasodilation during exercise. Circulation 88:1245–1253

    Article  CAS  Google Scholar 

  • Edlund A, Sollevi A, Wennmalm A (1989) The role of adenosine and prostacyclin in coronary flow regulation in healthy man. Acta Physiol Scand 135:39–46

    Article  CAS  Google Scholar 

  • Endeward V, Arias-Hidalgo M, Al-Samir S, Gros G (2017) CO2 permeability of biological membranes and role of CO2 channels. Membranes (Basel) 7:61

    Article  Google Scholar 

  • Evans AM (2019) AMPK breathing and oxygen supply. Respir Physiol Neurobiol 265:112–120

    Article  CAS  Google Scholar 

  • Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118:691–728

    Article  CAS  Google Scholar 

  • Fleming I, Hecker M, Busse R (1994) Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. Circ Res 74:1220–1226

    Article  CAS  Google Scholar 

  • Frøbert O, Haink G, Simonsen U, Gravholt CH, Levin M, Deussen A (2006) Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation. J Physiol 570:375–384

    Article  Google Scholar 

  • Furchgott RF (1966) Metabolic factors that influence contractility of vascular smooth muscle. Bull N Y Acad Med 42:996–1006

    CAS  Google Scholar 

  • Gassmann M, Cowburn A, Gu H, Li J, Rodriguez M, Babicheva A, Jain PP, **ong M, Gassmann NN, Yuan JX, Wilkins MR, Zhao L (2021) Hypoxia-induced pulmonary hypertension-utilizing experiments of nature. Br J Pharmacol 178:121–131

    Article  CAS  Google Scholar 

  • Gebremedhin D, Yamaura K, Harder DR (2008) Role of 20-HETE in the hypoxia-induced activation of Ca2+-activated K+ channel currents in rat cerebral arterial muscle cells. Am J Physiol Heart Circ Physiol 294:H107–H120

    Article  CAS  Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Coronardurchblutung. Naturwissenschaften 50:228–229

    Article  CAS  Google Scholar 

  • Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277–297

    Article  CAS  Google Scholar 

  • Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7:321–382

    Article  Google Scholar 

  • Guieu R, Deharo JC, Maille B, Crotti L, Torresani E, Brignole M, Parati G (2020) Adenosine and the cardiovascular system: the good and the bad. J Clin Med 9:1366

    Article  CAS  Google Scholar 

  • Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290:E1237–E1244

    Article  CAS  Google Scholar 

  • Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS One 3:e2915

    Article  Google Scholar 

  • Haseler LJ, Richardson RS, Videen JS, Hogan MC (1998) Phosphocreatine hydrolysis during submaximal exercise: the effect of FiO2. J Appl Physiol 85:1457–1463

    Article  CAS  Google Scholar 

  • Heaps CL, Bowles DK (2002) Gender-specific K+-channel contribution to adenosine-induced relaxation in coronary arterioles. J Appl Physiol 92:550–558

    Article  CAS  Google Scholar 

  • Hedegaard ER, Nielsen BD, Kun A, Hughes AD, Krøigaard C, Mogensen S, Matchkov VV, Fröbert O, Simonsen U (2014) KV7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br J Pharmacol 171:69–82

    Article  CAS  Google Scholar 

  • Hellsten Y (1999) The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells. J Physiol 518:761–768

    Article  CAS  Google Scholar 

  • Henderson GC, Horning MA, Lehman SL, Wolfel EE, Bergman BC, Brooks GA (2004) Pyruvate shuttling during rest and exercise before and after endurance training in men. J Appl Physiol 97:317–325

    Article  CAS  Google Scholar 

  • Hogan MC, Nioka S, Brechue WF, Chance B (1992) A 31P-NMR study of tissue respiration in working dog muscle during reduced O2 delivery conditions. J Appl Physiol 73:1662–1670

    Article  CAS  Google Scholar 

  • Hollyer TR, Bordoni L, Kousholt BS, van Luijk J, Ritskes-Hoitinga M, Østergaard L (2019) The evidence for the physiological effects of lactate on the cerebral microcirculation: a systematic review. J Neurochem 148:712–730

    Article  CAS  Google Scholar 

  • Hussien R, Brooks GA (2011) Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol Genomics 43:255–264

    Article  CAS  Google Scholar 

  • Ido Y, Chang K, Williamson JR (2004) NADH augments blood flow in physiologically activated retina and visual cortex. Proc Natl Acad Sci U S A 101:653–658

    Article  CAS  Google Scholar 

  • Ishibashi Y, Duncker DJ, Zhang J, Bache RJ (1998) ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82:346–359

    Article  CAS  Google Scholar 

  • Jiang S, Wang X, Wei J, Zhang G, Zhang J, **e P, Xu L, Wang L, Zhao L, Li L, Wilcox CS, Chen J, Lai EY, Liu R (2019) NaHCO3 dilates mouse afferent arteriole via Na+/HCO3− cotransporters NBCs. Hypertension 74:1104–1112

    Article  CAS  Google Scholar 

  • Johnson ML, Emhoff CA, Horning MA, Brooks GA (2012) Transpulmonary lactate shuttle. Am J Physiol Regul Integr Comp Physiol 302:R143–R149

    Article  CAS  Google Scholar 

  • Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol Cell Physiol 250:C663–C675

    Article  CAS  Google Scholar 

  • Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95:549–601

    Article  CAS  Google Scholar 

  • Joyner MJ, Dempsey JA (2018) Physiological redundancy and the integrative responses to exercise. Cold Spring Harb Perspect Med 8:a029660

    Article  Google Scholar 

  • Katz A, Sahlin K (1988) Regulation of lactic acid production during exercise. J Appl Physiol 65:509–518

    Article  CAS  Google Scholar 

  • Kaldenhoff R, Kai L, Uehlein N (2014) Aquaporins and membrane diffusion of CO2 in living organisms. Biochim Biophys Acta 1840:1592–1595

    Article  CAS  Google Scholar 

  • Laganá G, Barreca D, Calderaro A, Bellocco E (2019) Lactate dehydrogenase inhibition: biochemical relevance and therapeutical potential. Curr Med Chem 26:3242–3252

    Article  Google Scholar 

  • Lamb IR, Murrant CL (2015) Potassium inhibits nitric oxide and adenosine arteriolar vasodilatation via KIR and Na+/K+ ATPase: implications for redundancy in active hyperaemia. J Physiol 593:5111–5126

    Article  CAS  Google Scholar 

  • Leach RM, Sheehan DW, Chacko VP, Sylvester JT (2000) Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. Am J Physiol Lung Cell Mol Physiol 278:L294–L304

    Article  CAS  Google Scholar 

  • Liu B, Shi R, Li X, Liu Y, Feng X, Chen X, Fan X, Zhang Y, Zhang W, Tang J, Zhou X, Li N, Lu X, Xu Z (2018) Downregulation of L-type voltage-gated Ca2+, voltage-gated K+, and large-conductance Ca2+-activated K+ channels in vascular myocytes from salt-loading offspring rats exposed to prenatal hypoxia. J Am Heart Assoc 7:e008148

    Article  Google Scholar 

  • Lynge J, Hellsten Y (2000) Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle. Acta Physiol Scand 169:283–290

    Article  CAS  Google Scholar 

  • Lynge J, Juel C, Hellsten Y (2001) Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters. J Physiol 537:597–605

    Article  CAS  Google Scholar 

  • Maimon N, Titus PA, Sarelius IH (2014) Pre-exposure to adenosine, acting via A2A receptors on endothelial cells, alters the protein kinase a dependence of adenosine-induced dilation in skeletal muscle resistance arterioles. J Physiol 592:2575–2590

    Article  CAS  Google Scholar 

  • Marshall JM (2007) The roles of adenosine and related substances in exercise hyperaemia. J Physiol 583:835–845

    Article  CAS  Google Scholar 

  • Marshall JM, Ray CJ (2012) Contribution of non-endothelium-dependent substances to exercise hyperaemia: are they O2 dependent? J Physiol 590:6307–6320

    Article  CAS  Google Scholar 

  • Merkus D, Haitsma DB, Fung TY, Assen YJ, Verdouw PD, Duncker DJ (2003) Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am J Physiol Heart Circ Physiol 285:H424–H433

    Article  CAS  Google Scholar 

  • Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF (2021) Carbon dioxide transport across membranes. Interface Focus 11:20200090

    Article  Google Scholar 

  • Mintun MA, Vlassenko AG, Rundle MM, Raichle ME (2004) Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc Natl Acad Sci U S A 101:659–664

    Article  CAS  Google Scholar 

  • Molé PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol Regul Integr Comp Physiol 277:R173–R180

    Article  Google Scholar 

  • Montoya JJ, Fernández N, Monge L, Diéguez G, Villalón AL (2011) Nitric oxide-mediated relaxation to lactate of coronary circulation in the isolated perfused rat heart. J Cardiovasc Pharmacol 58:392–398

    Article  CAS  Google Scholar 

  • Mortensen SP, Gonzalez-Alonso J, Nielsen JJ, Saltin B, Hellsten Y (2009) Muscle interstitial ATP and norepinenphrine concentrations in the human leg during exercise and ATP infusion. J Appl Physiol 107:1757–1762

    Article  CAS  Google Scholar 

  • Murrant CL, Dodd JD, Foster AJ, Inch KA, Muckle FR, Ruiz DA, Simpson JA, Scholl JH (2014) Prostaglandins induce vasodilatation of the microvasculature during muscle contraction and induce vasodilatation independent of adenosine. J Physiol 592:1267–1281

    Article  CAS  Google Scholar 

  • Nalbandian M, Takeda M (2016) Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology 5:38

    Article  Google Scholar 

  • Neo BH, Kandhi S, Ahmad M, Wolin MS (2010) Redox regulation of guanylate cyclase and protein kinase G in vascular responses to hypoxia. Respir Physiol Neurobiol 174:259–264

    Article  CAS  Google Scholar 

  • Ngo AT, Riemann M, Holstein-Rathlou NH, Torp-Pedersen C, Jensen LJ (2013) Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles in vivo. BMC Physiol 13:8

    Article  CAS  Google Scholar 

  • Nyberg M, Mortensen SP, Thaning P, Saltin B, Hellsten Y (2010) Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle. Hypertension 56:1102–1108

    Article  CAS  Google Scholar 

  • Occhipinti R, Boron WF (2019) Role of carbonic anhydrases and inhibitors in acid-base physiology: insights from mathematical modeling. Int J Mol Sci 20:3841

    Article  CAS  Google Scholar 

  • Passarella S, Paventi G, Pizzuto R (2014) The mitochondrial L-lactate dehydrogenase affair. Front Neurosci 8:407

    Article  Google Scholar 

  • Pittman RN, Duling BR (1973) Oxygen sensitivity of vascular smooth muscle. Microvasc Res 6:202–211

    Article  CAS  Google Scholar 

  • Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17:257–321

    CAS  Google Scholar 

  • Pries AR, Secomb TW (2014) Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology (Bethesda) 29:446–455

    Google Scholar 

  • Quade BN, Parker MD, Occhipinti R (2021) The therapeutic importance of acid-base balance. Biochem Pharmacol 183:114278

    Article  CAS  Google Scholar 

  • Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J (2019) Adenosine and the cardiovascular system. Am J Cardiovasc Drugs 19:449–464

    Article  CAS  Google Scholar 

  • Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG (2006) Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. J Physiol 571:415–424

    Article  CAS  Google Scholar 

  • Richardson RS, Noyszewski EA, Leigh JS, Wagner PD (1998) Lactate efflux from exercising human skeletal muscle: role of intracellular PO2. J Appl Physiol 85:627–634

    Article  CAS  Google Scholar 

  • Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621

    Article  CAS  Google Scholar 

  • Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ (2011) Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 301:H2322–H2333

    Article  CAS  Google Scholar 

  • Sarelius I, Pohl U (2010) Control of muscle blood flow during exercise: local factors and integrative mechanisms. Acta Physiol (Oxf) 199:349–365

    Article  CAS  Google Scholar 

  • Schemke S, de Wit C (2021) KATP channels and NO dilate redundantly intramuscular arterioles during electrical stimulation of the skeletal muscle in mice. Pflugers Arch 473:1795–1806

    Article  CAS  Google Scholar 

  • Schrage WG, Dietz NM, Joyner MJ (2006) Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. J Appl Physiol 100:1506–1512

    Article  CAS  Google Scholar 

  • Schrage WG, Joyner MJ, Dinenno FA (2004) Local inhibition of nitric oxide and prostaglandins independently reduce forearm exercise hyperaemia in humans. J Physiol 557:599–611

    Article  CAS  Google Scholar 

  • Sharifi-Sanjani M, Zhou X, Asano S, Tilley SL, Ledent C, Teng B, Dick GM, Mustafa SJ (2013) Interactions between A2A adenosine receptors, hydrogen peroxide, and KATP channels in coronary reactive hyperemia. Am J Physiol Heart Circ Physiol 304:H1294–H1301

    Article  Google Scholar 

  • Shimokawa H (2020) Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and rho-kinase. J Clin Biochem Nutr 66:83–91

    Article  CAS  Google Scholar 

  • Skattebo Ø, Calbet JAL, Rud B, Capelli C, Hallén J (2020) Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 230:e13486

    Article  CAS  Google Scholar 

  • Smani T, Hernandez A, Urena J, Castellano AG, Franco-Obregon A, Ordonez A, López-Barneo J (2002) Reduction of Ca2+ channel activity by hypoxia in human and porcine coronary myocytes. Cardiovasc Res 53:97–104

    Article  CAS  Google Scholar 

  • Smith KA, Schumacker PT (2019) Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction. J Physiol 597:1033–1043

    Article  CAS  Google Scholar 

  • Sokolova IM, Sokolov EP, Haider F (2019) Mitochondrial mechanisms underlying tolerance to fluctuating oxygen conditions: lessons from hypoxia-tolerant organisms. Integr Comp Biol 59:938–952

    Article  CAS  Google Scholar 

  • Sparks HV (2011) Effect of local metabolic factors on vascular smooth muscle. Compr Physiol Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle, pp 475–513

    Google Scholar 

  • Stowe DF (1994) Heart bioassay of effluent of isolated, perfused Guinea pig hearts to examine the role of metabolites regulating coronary flow during hypoxia. Basic Res Cardiol 76:359–364

    Article  Google Scholar 

  • Strielkov I, Pak O, Sommer N, Weissmann N (2017) Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 123:1647–1656

    Article  CAS  Google Scholar 

  • Sun S, Li H, Chen J, Qian Q (2017) Lactic acid: no longer an inert and end-product of glycolysis. Physiology (Bethesda) 32:453–463

    CAS  Google Scholar 

  • Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520

    Article  CAS  Google Scholar 

  • Terwoord JD, Hearon CM Jr, Racine ML, Ketelhut NB, Luckasen GJ, Richards JC, Dinenno FA (2020) KIR channel activation links local vasodilatation with muscle fibre recruitment during exercise in humans. J Physiol 598:2621–2636

    Article  CAS  Google Scholar 

  • Tresguerres M, Buck J, Levin LR (2010) Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch 460:953–964

    Article  CAS  Google Scholar 

  • Tune JD, Goodwill AG, Kiel AM, Baker HE, Bender SB, Merkus D, Duncker DJ (2020) Disentangling the Gordian knot of local metabolic control of coronary blood flow. Am J Physiol Heart Circ Physiol 318:H11–H24

    Article  CAS  Google Scholar 

  • Tune JD, Richmond KN, Gorman MW, Feigl EO (2000) Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation 101:2942–2948

    Article  CAS  Google Scholar 

  • Wang T, Sodhi J, Mentzer RM Jr, Van Wylen DG (1994) Changes in interstitial adenosine during hypoxia: relationship to oxygen supply:demand imbalance, and effects of adenosine deaminase. Cardiovasc Res 28:1320–1325

    Article  CAS  Google Scholar 

  • Wardle RL, Gu M, Ishida Y, Paul RJ (2007) Rho kinase is an effector underlying Ca2+-desensitizing hypoxic relaxation in porcine coronary artery. Am J Physiol Heart Circ Physiol 293:H23–H29

    Article  CAS  Google Scholar 

  • Weir EK, Archer SL (2010) The role of redox changes in oxygen sensing. Respir Physiol Neurobiol 174:182–191

    Article  CAS  Google Scholar 

  • Westhoff J, Weismüller K, Koch C, Mann V, Weigand MA, Henrich M (2018) Vasomotion of mice mesenteric arteries during low oxygen levels. Eur J Med Res 23:38

    Article  CAS  Google Scholar 

  • Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, Tian L, Archer SL (2021) Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radic Biol Med 170:150–178

    Article  CAS  Google Scholar 

  • Yang M, Dart C, Kamishima T, Quayle JM (2020) Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells. PeerJ 8:e10344

    Article  Google Scholar 

  • Yegutkin GG (2021) Adenosine metabolism in the vascular system. Biochem Pharmacol 187:114373

    Article  CAS  Google Scholar 

  • Yoo HY, Kim SJ (2021) Oxygen-dependent regulation of ion channels: acute responses, post-translational modification, and response to chronic hypoxia. Pflugers Arch 473:1589. https://doi.org/10.1007/s00424-021-02590-7

    Article  CAS  Google Scholar 

  • Zhang C, Paul RJ (1994) Excitation-contraction coupling and relaxation in porcine carotid arteries are specifically dependent on glucose. Am J Phys 267:H1996–H2004

    CAS  Google Scholar 

  • Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z (2021) Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 116:22

    Article  CAS  Google Scholar 

  • Zhou X, Teng B, Tilley S, Mustafa SJ (2013) A1 adenosine receptor negatively modulates coronary reactive hyperemia via counteracting A2A-mediated H2O2 production and KATP opening in isolated mouse hearts. Am J Physiol Heart Circ Physiol 305:H1668–H1679

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y. (2022). Local Metabolic Factors and Vasoactivity. In: Biology of Vascular Smooth Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-19-7122-8_9

Download citation

Publish with us

Policies and ethics

Navigation