Neurotransmitters

  • Chapter
  • First Online:
Biology of Vascular Smooth Muscle

Abstract

The activities of vasculature are regulated by neurotransmitters released from the nerve terminals in the wall of the blood vessels, which include the sympathetic, parasympathetic, and sensory-motor nerves. These neurotransmitters exert their effects mostly by binding to the G protein-coupled receptors (GPCRs), which trigger the dissociation of the α-subunit of the G protein from the βγ-subunits followed by the activation of their downstream effectors. The α-subunits exist with multiple isoforms. The diversity of the α-subunits combined with increasingly revealed βγ-subunit functions confers vascular smooth muscle and endothelial cells to respond to different neurotransmitters in a manner suitable for complex physiological changes. Contrary to the classic view the neurotransmitters are co-released from the nerve terminals. These neurotransmitters include norepinephrine, acetylcholine, ATP, neuropeptide Y, vasoactive intestinal peptide, nitric oxide, calcitonin gene-related peptide, substance P, and others. Some of them are vasoconstrictors and some are vasodilators. The balance of the activity of these neurotransmitters is critical for the integrity of vascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalkjær C, Nilsson H, De Mey JGR (2021) Sympathetic and sensory-motor nerves in peripheral small arteries. Physiol Rev 101:495–544

    Article  Google Scholar 

  • Abu Bakar H, Robert Dunn W, Daly C, Ralevic V (2017) Sensory innervation of perivascular adipose tissue: a crucial role in artery vasodilatation and leptin release. Cardiovasc Res 113:962–972

    Article  Google Scholar 

  • Akinaga J, García-Sáinz JA, Pupo AS (2019) Updates in the function and regulation of α1-adrenoceptors. Br J Pharmacol 176:2343–2357

    CAS  Google Scholar 

  • Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA, Collaborators CGTP (2019) The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 176(Suppl 1):S21–S141

    Google Scholar 

  • Al-Gburi S, Deussen A, Zatschler B, Weber S, Künzel S, El-Armouche A, Lorenz K, Cybularz M, Morawietz H, Kopaliani I (2017) Sex-difference in expression and function of beta-adrenoceptors in macrovessels: role of the endothelium. Basic Res Cardiol 112:29

    Article  Google Scholar 

  • Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F (2021) GPCRs: the most promiscuous druggable receptor of the mankind. Saudi Pharm J 29:539–551

    Article  CAS  Google Scholar 

  • Angus JA, Cocks TM, Satoh K (1986) The alpha adrenoceptors on endothelial cells. Fed Proc 45:2355–2359

    CAS  Google Scholar 

  • Attinà TM, Oliver JJ, Malatino LS, Webb DJ (2008) Contribution of the M3 muscarinic receptors to the vasodilator response to acetylcholine in the human forearm vascular bed. Br J Clin Pharmacol 66:300–303

    Article  Google Scholar 

  • Audigane L, Persello A, Piriou N, Ferron M, Trochu JN, Lauzier B, Gauthier C, Rozec B (2021) Early nebivolol treatment is beneficial in myocardial infarction in rats partly through beta3-adrenoceptor remodelling. Clin Exp Pharmacol Physiol 48:1007–1015

    Article  CAS  Google Scholar 

  • Berg KA, Clarke WP (2018) Making sense of pharmacology: inverse agonism and functional selectivity. Int J Neuropsychopharmacol 21:962–977

    Article  CAS  Google Scholar 

  • Black JB, Premont RT, Daaka Y (2016) Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin Cell Dev Biol 50:95–104

    Article  CAS  Google Scholar 

  • Bodin P, Burnstock G (2001) Purinergic signaling: ATP release. Neurochem Res 26:959–969

    Article  CAS  Google Scholar 

  • Böhmer T, Manicam C, Steege A, Michel MC, Pfeiffer N, Gericke A (2014) The α1B -adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium. Br J Pharmacol 171:3858–3867

    Article  Google Scholar 

  • Brown MD, Sacks DB (2008) Protein scaffolds in MAP kinase signalling. Cell Signal 21:462–469

    Article  Google Scholar 

  • Burnstock G (2009) Autonomic neurotransmission: 60 years since Sir Henry dale. Annu Rev Pharmacol Toxicol 49:1–30

    Article  CAS  Google Scholar 

  • Burnstock G (2013) Cotransmission in the autonomic nervous system. Handb Clin Neurol 117:23–35

    Article  Google Scholar 

  • Burnstock G (2017) Purinergic signaling in the cardiovascular system. Circ Res 120:207–228

    Article  CAS  Google Scholar 

  • Burnstock G (2020) Introduction to purinergic signaling. Methods Mol Biol 2041:1–15

    Article  CAS  Google Scholar 

  • Burnstock G, Ralevic V (2013) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    Article  Google Scholar 

  • Carmona-Rosas G, Alcántara-Hernández R, Hernández-Espinosa DA (2018) Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2. Eur J Cell Biol 97:349–358

    Article  CAS  Google Scholar 

  • Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S (1997) Decreased blood pressure response in mice deficient of the alpha1b-adrenergic receptor. Proc Natl Acad Sci U S A 94:11589–11594

    Article  CAS  Google Scholar 

  • Cernecka H, Sand C, Michel MC (2014) The odd sibling: features of β3-adrenoceptor pharmacology. Mol Pharmacol 86:479–484

    Article  Google Scholar 

  • Chachlaki K, Prevot V (2020) Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 177:5437–5458

    Article  CAS  Google Scholar 

  • Chiba S, Tsukada M (1996) Possible involvement of muscarinic M1 and M3 receptor subtypes mediating vasodilation in isolated, perfused canine lingual arteries. Clin Exp Pharmacol Physiol 23:839–843

    Article  CAS  Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1984) Neurogenic cholinergic prejunctional inhibition of sympathetic beta adrenergic relaxation in the canine coronary artery. J Pharmacol Exp Ther 229:417–421

    CAS  Google Scholar 

  • Docherty JR (2010) Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 67:405–417

    Article  CAS  Google Scholar 

  • Duckles SP (1981) Evidence for a functional cholinergic innervation of cerebral arteries. J Pharmacol Exp Ther 217:544–548

    CAS  Google Scholar 

  • Eglen RM, Whiting RL (1990) Heterogeneity of vascular muscarinic receptors. J Auton Pharmacol 10:233–245

    Article  CAS  Google Scholar 

  • Eichel K, Jullié D, von Zastrow M (2016) β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18:303–310

    Article  CAS  Google Scholar 

  • Elhusseiny A, Hamel E (2000) Muscarinic- but not nicotinic-acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20:298–305

    Article  CAS  Google Scholar 

  • Erdling A, Sheykhzade M, Maddahi A, Bari F, Edvinsson L (2013) VIP/PACAP receptors in cerebral arteries of rat: characterization, localization and relation to intracellular calcium. Neuropeptides 47:85–92

    Article  CAS  Google Scholar 

  • Feng MG, Prieto MC, Navar LG (2012) Nebivolol-induced vasodilation of renal afferent arterioles involves β3-adrenergic receptor and nitric oxide synthase activation. Am J Physiol Renal Physiol 303:F775–F782

    Article  CAS  Google Scholar 

  • Figueroa XF, Poblete MI, Boric MP, Mendizabal VE, Adler-Graschinsky E, Huidobro-Toro JP (2001) Clonidine-induced nitric oxide dependent vasorelaxation mediated by endothelial α2-adrenoceptor activation. Br J Pharmacol 134:957–968

    Article  CAS  Google Scholar 

  • Figueroa XF, Poblete I, Fernández R, Pedemonte C, Cortés V, Huidobro-Toro JP (2009) NO production and eNOS phosphorylation induced by epinephrine through the activation of beta-adrenoceptors. Am J Physiol Heart Circ Physiol 297:H134–H143

    Article  CAS  Google Scholar 

  • Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev 57:279–288

    Article  CAS  Google Scholar 

  • Fujii N, McGarr GW, Ghassa R, Schmidt MD, McCormick JJ, Nishiyasu T, Kenny GP (2020) Sex-differences in cholinergic, nicotinic, and β-adrenergic cutaneous vasodilation: roles of nitric oxide synthase, cyclooxygenase, and K+ channels. Microvasc Res 131:104030

    Article  CAS  Google Scholar 

  • Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018

    Article  CAS  Google Scholar 

  • Gao Y, Nagao T, Bond RA, Janssens WJ, Vanhoutte PM (1991) Nebivolol induces endothelium-dependent relaxations of canine coronary arteries. J Cardiovascular Pharmacol 17:964–969

    Article  CAS  Google Scholar 

  • Gericke A, Sniatecki JJ, Mayer VG, Goloborodko E, Patzak A, Wess J, Pfeiffer N (2011) Role of M1, M3, and M5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice. Am J Physiol Heart Circ Physiol 300:H1602–H1608

    Article  CAS  Google Scholar 

  • Gericke A, Steege A, Manicam C, Böhmer T, Wess J, Pfeiffer N (2014) Role of the M3 muscarinic acetylcholine receptor subtype in murine ophthalmic arteries after endothelial removal. Invest Ophthalmol Vis Sci 55:625–631

    Article  CAS  Google Scholar 

  • Giovannitti JA Jr, Thoms SM, Crawford JJ (2015) Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog 62:31–39

    Article  Google Scholar 

  • Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7:321–382

    Article  Google Scholar 

  • Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166:4–17

    Article  CAS  Google Scholar 

  • Harvey RD (2012) Muscarinic receptor agonists and antagonists: effects on cardiovascular function. Handb Exp Pharmacol 208:299–316

    Article  CAS  Google Scholar 

  • Heusch G (2011) The paradox of α-adrenergic coronary vasoconstriction revisited. J Mol Cell Cardiol 51:16–23

    Article  CAS  Google Scholar 

  • Hirsch D, Zukowska Z (2012) NPY and stress 30 years later: the peripheral view. Cell Mol Neurobiol 32:645–659

    Article  CAS  Google Scholar 

  • Hirst GDS, Edwards FR (1989) Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69:546–604

    Article  CAS  Google Scholar 

  • Hodavance SY, Gareri C, Torok RD, Rockman HA (2016) G protein-coupled receptor biased Agonism. J Cardiovasc Pharmacol 67:193–202

    Article  CAS  Google Scholar 

  • Ippolito M, Benovic JL (2021) Biased agonism at β-adrenergic receptors. Cell Signal 80:109905

    Article  CAS  Google Scholar 

  • Latorraca NR, Masureel M, Hollingsworth SA, Heydenreich FM, Suomivuori CM, Brinton C, Townshend RJL, Bouvier M, Kobilka BK, Dror RO (2020) How GPCR phosphorylation patterns orchestrate arrestin-mediated signaling. Cell 183:1813–1825.e18

    Article  CAS  Google Scholar 

  • Layland J, Carrick D, Lee M, Oldroyd K, Berry C (2014) Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv 6:581–591

    Article  Google Scholar 

  • Liu Z, Khalil RA (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 153:91–122

    Article  CAS  Google Scholar 

  • MacDonald JA, Walsh MP (2018) Regulation of smooth muscle myosin light chain phosphatase by multisite phosphorylation of the myosin targeting subunit, MYPT1. Cardiovasc Hematol Disord Drug Targets 18:4–13

    Article  CAS  Google Scholar 

  • McGrath JC (2015) Localization of α-adrenoceptors: JR vane medal lecture. Br J Pharmacol 172:1179–1194

    Article  CAS  Google Scholar 

  • Meens MJ, Mattheij NJ, van Loenen PB, Spijkers LJ, Lemkens P, Nelissen J, Compeer MG, Alewijnse AE, De Mey JG (2012) G-protein βγ subunits in vasorelaxing and anti-endothelinergic effects of calcitonin gene-related peptide. Br J Pharmacol 166:297–308

    Article  CAS  Google Scholar 

  • Merrifield CJ, Kaksonen M (2014) Endocytic accessory factors and regulation of clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 6:a016733

    Article  Google Scholar 

  • Michel MC, Michel-Reher MB, Hein P (2020) Systematic review of inverse agonism at adrenoceptor subtypes. Cell 9:1923

    Article  CAS  Google Scholar 

  • Miller VM, Vanhoutte PM (1985) Endothelial α2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur J Pharmacol 118:123–129

    Article  CAS  Google Scholar 

  • Mistrova E, Kruzliak P, Chottova Dvorakova M (2016) Role of substance P in the cardiovascular system. Neuropeptides 58:41–51

    Article  CAS  Google Scholar 

  • Moody TW, Jensen RT (2021) Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Curr Opin Endocrinol Diabetes Obes 28:198–205

    Article  CAS  Google Scholar 

  • Moo EV, van Senten JR, Bräuner-Osborne H, Møller TC (2021) Arrestin-dependent and -independent internalization of G protein-coupled receptors: methods, mechanisms, and implications on cell signaling. Mol Pharmacol 99:242–255

    Article  CAS  Google Scholar 

  • Morgado M, Cairrão E, Santos-Silva AJ, Verde I (2012) Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 69:247–266

    Article  CAS  Google Scholar 

  • Nobles KN, **ao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ (2011) Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 4:ra51

    Article  CAS  Google Scholar 

  • Okeke K, Angers S, Bouvier M, Michel MC (2019) Agonist-induced desensitisation of β3-adrenoceptors: where, when, and how? Br J Pharmacol 176:2539–2558

    Article  CAS  Google Scholar 

  • Parra S, Bond RA (2007) Inverse agonism: from curiosity to accepted dogma, but is it clinically relevant? Curr Opin Pharmacol 7:146–150

    Article  CAS  Google Scholar 

  • Peixoto-Neves D, Soni H, Adebiyi A (2019) CGRPergic nerve TRPA1 channels contribute to epigallocatechin gallate-induced neurogenic vasodilation. ACS Chem Neurosci 10:216–220

    Article  CAS  Google Scholar 

  • Perez-Aso M, Flacco N, Carpena N, Montesinos MC, D’Ocon P, Ivorra MD (2014) β-Adrenoceptors differentially regulate vascular tone and angiogenesis of rat aorta via ERK1/2 and p38. Vasc Pharmacol 61:80–89

    Article  CAS  Google Scholar 

  • Pfleger J, Gresham K, Koch WJ (2019) G protein-coupled receptor kinases as therapeutic targets in the heart. Nat Rev Cardiol 16:612–622

    Article  Google Scholar 

  • Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF (2017) All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Sci Rep 7:5083

    Article  Google Scholar 

  • Ralevic V (2021) Purinergic signalling in the cardiovascular system-a tribute to Geoffrey Burnstock. Purinergic Signal 17:63–69

    Article  CAS  Google Scholar 

  • Ralevic V, Dunn WR (2015) Purinergic transmission in blood vessels. Auton Neurosci 191:48–66

    Article  CAS  Google Scholar 

  • Ribas C, Penela P, Murga C, Salcedo A, García-Hoz C, Jurado-Pueyo M, Aymerich I, Mayor F Jr (2007) The G protein-coupled receptor kinase (GRK) interactome: role of GRKs in GPCR regulation and signaling. Biochim Biophys Acta 1768:913–922

    Article  CAS  Google Scholar 

  • Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  Google Scholar 

  • Roloff EV, Tomiak-Baquero AM, Kasparov S, Paton JF (2016) Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 594:6463–6485

    Article  CAS  Google Scholar 

  • Russell FA, King R, Smillie SJ, Kodji X, Brain SD (2014) Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 94:1099–1142

    Article  CAS  Google Scholar 

  • Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F Jr, Ribas C (2014) Gαq signalling: the new and the old. Cell Signal 26:833–848

    Article  Google Scholar 

  • Saraf R, Mahmood F, Amir R, Matyal R (2016) Neuropeptide Y is an angiogenic factor in cardiovascular regeneration. Eur J Pharmacol 776:64–70

    Article  CAS  Google Scholar 

  • Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, AbouAlaiwi WA (2018) Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics 50:1–9

    Article  CAS  Google Scholar 

  • Schena G, Caplan MJ (2019) Everything you always wanted to know about β3-AR * (* but were afraid to ask). Cell 8:357

    Article  CAS  Google Scholar 

  • Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T (2018) Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Nat Struct Mol Biol 25:538–545

    Article  CAS  Google Scholar 

  • Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV (2021) Receptor-arrestin interactions: the GPCR perspective. Biomolecules 11:218

    Article  CAS  Google Scholar 

  • Shende P, Desai D (2020) Physiological and therapeutic roles of neuropeptide Y on biological functions. Adv Exp Med Biol 1237:37–47

    Article  CAS  Google Scholar 

  • Sheng Y, Zhu L (2018) The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol 10:17–28

    CAS  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2005) Seven-transmembrane receptor signaling through b-arrestin. Sci STKE 2005:cm10

    Article  Google Scholar 

  • Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17:243–260

    Article  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    Article  CAS  Google Scholar 

  • Sulon SM, Benovic JL (2021) Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. Curr Opin Endocr Metab Res 16:56–65

    Article  CAS  Google Scholar 

  • Suzuki N, Hardebo JE (1993) The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5:33–46

    CAS  Google Scholar 

  • Tan CMJ, Green P, Tapoulal N, Lewandowski AJ, Leeson P, Herring N (2018) The role of neuropeptide Y in cardiovascular health and disease. Front Physiol 9:1281

    Article  Google Scholar 

  • Tanaka Y, Horinouchi T, Koike K (2005) New insights into beta-adrenoceptors in smooth muscle: distribution of receptor subtypes and molecular mechanisms triggering muscle relaxation. Clin Exp Pharmacol Physiol 32:503–514

    Article  CAS  Google Scholar 

  • Toda N, Ayajiki K, Okamura T (2009) Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev 61:62–97

    Article  CAS  Google Scholar 

  • Toda N, Okamura T (2003) The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 55:271–324

    Article  CAS  Google Scholar 

  • Vanhoutte PM, Gao Y (2013) Beta blockers, nitric oxide, and cardiovascular disease. Curr Opin Pharmacol 13:265–273

    Article  CAS  Google Scholar 

  • Vanhoutte PM, Shepherd JT (1983) Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall. Gen Pharmacol 14:35–37

    Article  CAS  Google Scholar 

  • Vanhoutte PM, Zhao Y, Xu A, Leung SW (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res 119:375–396

    Article  CAS  Google Scholar 

  • Velmurugan BK, Baskaran R, Huang CY (2019) Detailed insight on β-adrenoceptors as therapeutic targets. Biomed Pharmacother 117:109039

    Article  CAS  Google Scholar 

  • Walch L, Brink C, Norel X (2001) The muscarinic receptor subtypes in human blood vessels. Therapie 56:223–226

    CAS  Google Scholar 

  • Wang Y, Dong X (2016) Nebivolol ameliorates asymmetric dimethylarginine-induced vascular response in rat aorta via β3 adrenoceptor-mediated mechanism. Clin Exp Hypertens 38:252–259

    Article  CAS  Google Scholar 

  • Westcott EB, Segal SS (2013) Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 20:217–238

    Article  CAS  Google Scholar 

  • Wisler JW, Rockman HA, Lefkowitz RJ (2018) Biased G protein-coupled receptor signaling: changing the paradigm of drug discovery. Circulation 137:2315–2317

    Article  CAS  Google Scholar 

  • Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS (2019) Illuminating the onco-GPCRome: novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 294:11062–11086

    Article  CAS  Google Scholar 

  • Yamada M, Lam** KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 98:14096–14101

    Article  CAS  Google Scholar 

  • Yang Z, Yang F, Zhang D, Liu Z, Lin A, Liu C, **ao P, Yu X, Sun JP (2017) Phosphorylation of G protein-coupled receptors: from the barcode hypothesis to the flute model. Mol Pharmacol 92:201–210

    Article  CAS  Google Scholar 

  • Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, **ao KH, Wang JY, Sun JP (2015) Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat Commun 6:8202

    Article  Google Scholar 

  • Yegutkin GG (2021) Adenosine metabolism in the vascular system. Biochem Pharmacol 187:114373

    Article  CAS  Google Scholar 

  • Yokomizo A, Takatori S, Hashikawa-Hobara N, Goda M, Kawasaki H (2015) Characterization of perivascular nerve distribution in rat mesenteric small arteries. Biol Pharm Bull 38:1757–1764

    Article  CAS  Google Scholar 

  • Zieba BJ, Artamonov MV, ** L, Momotani K, Ho R, Franke AS, Neppl RL, Stevenson AS, Khromov AS, Chrzanowska-Wodnicka M, Somlyo AV (2011) The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem 286:16681–16692

    Article  CAS  Google Scholar 

  • Zimmermann H (2021) Ectonucleoside triphosphate diphosphohydrolases and ecto-5′-nucleotidase in purinergic signaling: how the field developed and where we are now. Purinergic Signal 17:117–125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y. (2022). Neurotransmitters. In: Biology of Vascular Smooth Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-19-7122-8_7

Download citation

Publish with us

Policies and ethics

Navigation