Cerebral Vasoreactivity

  • Chapter
  • First Online:
Biology of Vascular Smooth Muscle

Abstract

Cerebral blood flow is mainly regulated by two mechanisms: cerebral autoregulation and neurovascular coupling (NVC). Cerebral autoregulation maintains a constant blood flow within the physiological range of systemic pressures, which is predominantly operated through myogenic response. The cerebral microcirculation is supplied by parenchymal arterioles, which form a functional unit with the adjacent nerve terminals and astrocytes that encase the arterioles, known as neurovascular unit. Such a morphological arrangement ensures rapid spatial and temporal increases in cerebral blood flow in response to neuronal activation, known as NVC. A broad range of metabolic factors, vascular active agents, and neuronal activities are involved in the processes of autoregulation and NVC through affecting vascular reactivity. Among them, the most prominent ones include O2, CO2, adenosine, nitric oxide, prostaglandins, epoxyeicosatrienoic acids, and neuronal regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal N, Carare RO (2021) Cerebral vessels: an overview of anatomy, physiology, and role in the drainage of fluids and solutes. Front Neurol 11:611485

    Article  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  Google Scholar 

  • Barnett J, Chow J, Ives D, Chiou M, Mackenzie R, Osen E, Nguyen B, Tsing S, Bach C, Freire J, Chan H, Elliott Sigal E, Ramesha C (1994) Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta 1209:130–139

    Article  CAS  Google Scholar 

  • Binks AP, Cunningham VJ, Adams L, Banzett RB (2008) Gray matter blood flow change is unevenly distributed during moderate isocapnic hypoxia in humans. J Appl Physiol 104:212–217

    Article  Google Scholar 

  • Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G (1995) Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26:834–837

    Article  CAS  Google Scholar 

  • Brassard P, Labrecque L, Smirl JD, Tymko MM, Caldwell HG, Hoiland RL, Lucas SJE, Denault AY, Couture EJ, Ainslie PN (2021) Losing the dogmatic view of cerebral autoregulation. Physiol Rep 9:e14982

    Article  Google Scholar 

  • Brassard P, Tymko MM, Ainslie PN (2017) Sympathetic control of the brain circulation: appreciating the complexities to better understand the controversy. Auton Neurosci 207:37–47

    Article  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  Google Scholar 

  • Caldwell HG, Howe CA, Hoiland RL, Carr JMJR, Chalifoux CJ, Brown CV, Patrician A, Tremblay JC, Panerai RB, Robinson TG, Minhas JS, Ainslie PN (2021) Alterations in arterial CO2 rather than pH affect the kinetics of neurovascular coupling in humans. J Physiol 599:3663–3676

    Article  CAS  Google Scholar 

  • Cipolla MJ (2016) The cerebral circulation, 2nd ed.. San Rafael, CA: Morgan & Claypool Life Sciences, p 2016

    Google Scholar 

  • Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101:1487–1559

    Article  CAS  Google Scholar 

  • Dabertrand F, Kroigaard C, Bonev AD, Cognat E, Dalsgaard T, Domenga-Denier V, Hill-Eubanks DC, Brayden JE, Joutel A, Nelson MT (2015) Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic model of small vessel disease. Proc Natl Acad Sci U S A 112:E796–E805

    Article  CAS  Google Scholar 

  • Dalkara T, Alarcon-Martinez L (2015) Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res 1623:3–17

    Article  CAS  Google Scholar 

  • de Labra C, Rivadulla C, Espinosa N, Dasilva M, Cao R, Cudeiro J (2009) Different sources of nitric oxide mediate neurovascular coupling in the lateral geniculate nucleus of the cat. Front Syst Neurosci 3:9

    Article  Google Scholar 

  • De Silva TM, Faraci FM (2016) Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol 36:241–258

    Article  Google Scholar 

  • Dings J, Jäger A, Meixensberger J, Roosen K (1998) Brain tissue pO2 and outcome after severe head injury. Neurol Res 20(Suppl 1):S71–S75

    Article  Google Scholar 

  • Dong T, Li M, Gao F, Wei P, Wang J (2022) Construction and imaging of a neurovascular unit model. Neural Regen Res 17:1685–1694

    Article  Google Scholar 

  • Drummond HA, Jernigan NL, Grifoni SC (2008) Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis. Hypertension 51:1265–1271

    Article  CAS  Google Scholar 

  • Drummond JC (2019) Blood pressure and the brain: how low can you go? Anesth Analg 128:759–771

    Article  Google Scholar 

  • Duffin J, Mikulis DJ, Fisher JA (2021) Control of cerebral blood flow by blood gases. Front Physiol 12:640075

    Article  Google Scholar 

  • Edvinsson L (1987) Innervation of the cerebral circulation. Ann N Y Acad Sci 519:334–348

    Article  CAS  Google Scholar 

  • Edvinsson L, Owman C, Sjoberg NO (1976) Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res 115:377–393

    Article  CAS  Google Scholar 

  • Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17

    Article  CAS  Google Scholar 

  • Faraci FM, Taugher RJ, Lynch C, Fan R, Gupta S, Wemmie JA (2019) Acid-sensing ion channels: novel mediators of cerebral vascular responses. Circ Res 125:907–920

    Article  CAS  Google Scholar 

  • Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2016) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323:96–109

    Article  CAS  Google Scholar 

  • Florence VM, Bevan JA (1979) Biochemical determinations of cholinergic innervation in cerebral arteries. Circ Res 45:212–218

    Article  CAS  Google Scholar 

  • Fog M (1938) The relationship between the blood pressure and the tonic regulation of the pial arteries. J Neurol Psychiatry 1:187–197

    Article  CAS  Google Scholar 

  • Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K, Lahiri S (2020) Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. J Cereb Blood Flow Metab 41:693–706

    Article  Google Scholar 

  • Golanov EV, Christensen JR, Reis DJ (2001) Neurons of a limited subthalamic area mediate elevations in cortical cerebral blood flow evoked by hypoxia and excitation of neurons of the rostral ventrolateral medulla. J Neurosci 21:4032–4041

    Article  CAS  Google Scholar 

  • Golanov EV, Reis DJ (1996) Contribution of oxygen-sensitive neurons of the rostral ventrolateral medulla to hypoxic cerebral vasodilatation in the rat. J Physiol 495:201–216

    Article  CAS  Google Scholar 

  • Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  CAS  Google Scholar 

  • Gordon GR, Howarth C, MacVicar BA (2016) Bidirectional control of blood flow by astrocytes: a role for tissue oxygen and other metabolic factors. Adv Exp Med Biol 903:209–219

    Article  CAS  Google Scholar 

  • Grubb S, Lauritzen M, Aalkjær C (2021) Brain capillary pericytes and neurovascular coupling. Comp Biochem Physiol A Mol Integr Physiol 254:110893

    Article  CAS  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  Google Scholar 

  • Hamel E (2004) Cholinergic modulation of the cortical microvascular bed. Prog Brain Res 145:171–178

    Article  CAS  Google Scholar 

  • Hamner JW, Tan CO (2014) Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke 45:1771–1777

    Article  CAS  Google Scholar 

  • Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, Lange AR, Roman RJ (1996) Identification of a putative microvascular oxygen sensor. Circ Res 79:54–61

    Article  CAS  Google Scholar 

  • Heistad DD, Kontos HA (2011) Cerebral circulation. Comprehensive. Physiology:137–182

    Google Scholar 

  • Hein TW, Xu W, Ren Y, Kuo L (2013) Cellular signalling pathways mediating dilation of porcine pial arterioles to adenosine A2A receptor activation. Cardiovasc Res 99:156–163

    Article  CAS  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    Article  Google Scholar 

  • Hill MA, Meininger GA (2012) Arteriolar vascular smooth muscle cells: mechanotransducers in a complex environment. Int J Biochem Cell Biol 44:1505–1510

    Article  CAS  Google Scholar 

  • Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN (2016) Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 310:R398–R413

    Article  Google Scholar 

  • Hoiland RL, Fisher JA, Ainslie PN (2019) Regulation of the cerebral circulation by arterial carbon dioxide. Compr Physiol 9:1101–1154

    Article  Google Scholar 

  • Hotta H (2016) Neurogenic control of parenchymal arterioles in the cerebral cortex. Prog Brain Res 225:3–39

    Article  CAS  Google Scholar 

  • Hou K, Ji T, Luan T, Yu J (2021) CT angiographic study of the cerebral deep veins around the vein of Galen. Int J Med Sci 18:1699–1710

    Article  Google Scholar 

  • Iadecola C (1992) Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci U S A 89:3913–3916

    Article  CAS  Google Scholar 

  • Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42

    Article  CAS  Google Scholar 

  • Jarvis SS, Levine BD, Prisk GK, Shykoff BE, Elliot AR, Rosow E, Blomqvist CG, Pawelczyk JA (2007) Simultaneous determination of the accuracy and precision of closed-circuit output rebreathing techniques. J Appl Physiol 103:867–874

    Article  CAS  Google Scholar 

  • Jorfeldt J, Juhlin-Dannfelt A, Pernow B, Wassén E (1978) Determination of human leg blood flow: a thermodilution technique based on femoral venous bolus injection. Clin Sci Mol Med 54:51–523

    Google Scholar 

  • Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 95:549–601

    Article  CAS  Google Scholar 

  • Kauffenstein G, Laher I, Matrougui K, Guérineau NC, Henrion D (2012) Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res 95:223–232

    Article  CAS  Google Scholar 

  • Kiliç T, Akakin A (2008) Anatomy of cerebral veins and sinuses. Front Neurol Neurosci 23:4–15

    Article  Google Scholar 

  • Kimmerly DSDS, Tutungi EE, Wilson TDTD, Serrador JMJM, Gelb AWAW, Hughson RLRL, Shoemaker JKJK (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23:314–319

    Article  CAS  Google Scholar 

  • Kiowski W, Hulthén UL, Ritz R, Bühler FR (1983) α2 adrenoceptor-mediated vasoconstriction of arteries. Clin Pharmacol Ther 34:565–569

    Article  CAS  Google Scholar 

  • Kocharyan A, Fernandes P, Tong XK, Vaucher E, Hamel E (2008) Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J Cereb Blood Flow Metab 28:221–231

    Article  CAS  Google Scholar 

  • Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG (2022) Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 600:15–39

    Article  CAS  Google Scholar 

  • Koller A, Toth P (2012) Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res 49:375–389

    Article  Google Scholar 

  • Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol Heart Circ Physiol 234:H371–H383

    Article  CAS  Google Scholar 

  • Lafave HC, Zouboules SM, James MA, Purdy GM, Rees JL, Steinback CD, Ondrus P, Brutsaert TD, Nysten HE, Nysten CE, Hoiland RL, Sherpa MT, Day TA (2019) Steady-state cerebral blood flow regulation at altitude: interaction between oxygen and carbon dioxide. Eur J Appl Physiol 119:2529–2544

    Article  CAS  Google Scholar 

  • Laran**ha J, Nunes C, Ledo A, Lourenço C, Rocha B, Barbosa RM (2021) The peculiar facets of nitric oxide as a cellular messenger: from disease-associated signaling to the regulation of brain bioenergetics and neurovascular coupling. Neurochem Res 46:64–76

    Article  CAS  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238

    Article  CAS  Google Scholar 

  • Lassen NA (1974) Control of cerebral circulation in health and disease. Circ Res 34:749–760

    Article  CAS  Google Scholar 

  • Lecrux C, Hamel E (2016) Neuronal networks and mediators of cortical neurovascular coupling responses in normal and altered brain states. Philos Trans R Soc Lond Ser B Biol Sci 371. pii: 20150350

    Google Scholar 

  • Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S, Lévesque M, Plaisier F, Shmuel A, Cauli B, Hamel E (2011) Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation. J Neurosci 31:9836–9847

    Article  CAS  Google Scholar 

  • Lee TJ, Liu J, Evans MS (2001) Cholinergic-nitrergic transmitter mechanisms in the cerebral circulation. Microsc Res Tech 53:119–128

    Article  CAS  Google Scholar 

  • Leithner C, Royl G (2014) The oxygen paradox of neurovascular coupling. J Cereb Blood Flow Metab 34:19–29

    Article  CAS  Google Scholar 

  • Lewis NC, Messinger L, Monteleone B, Ainslie PN (2014) Effect of acute hypoxia on regional cerebral blood flow: effect of sympathetic nerve activity. J Appl Physiol (1985) 116:1189–1196

    Article  Google Scholar 

  • Li Y, Brayden JE (2017) Rho kinase activity governs arteriolar myogenic depolarization. J Cereb Blood Flow Metab 37:140–152

    Article  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    Article  CAS  Google Scholar 

  • Liu J, Zhu YS, Hill C, Armstrong K, Tarumi T, Hodics T, Hynan LS, Zhang R (2013) Cerebral autoregulation of blood velocity and volumetric flow during steady-state changes in arterial pressure. Hypertension 62:973–979

    Article  CAS  Google Scholar 

  • Lourenço CF, Laran**ha J (2021) Nitric oxide pathways in neurovascular coupling under normal and stress conditions in the brain: strategies to rescue aberrant coupling and improve cerebral blood flow. Front Physiol 12:729201

    Article  Google Scholar 

  • Ma J, Ayata C, Huang PL, Fishman MC, Moskowitz MA (1996) Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Phys 270:H1085–H1090

    CAS  Google Scholar 

  • Madsen PL, Schmidt JF, Wildschiodtz G, Friberg L, Holm S, Vorstrup S, Lassen NA (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol (1985) 70:2597–2601

    Article  CAS  Google Scholar 

  • Masamoto K, Tanishita K (2009) Oxygen transport in brain tissue. J Biomech Eng 131:74–82

    Article  Google Scholar 

  • Mastorakos P, McGavern D (2019) The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 4:eaav0492

    Article  CAS  Google Scholar 

  • McCaslin AF, Chen BR, Radosevich AJ, Cauli B, Hillman EM (2011) In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling. J Cereb Blood Flow Metab 31:795–806

    Article  CAS  Google Scholar 

  • Miekisiak G, Kulik T, Kusano Y, Kung D, Chen J-F, Winn HR (2008) Cerebral blood flow response in adenosine 2a receptor knockout mice during transient hypoxic hypoxia. J Cereb Blood Flow Metab 28:1656–1664

    Article  CAS  Google Scholar 

  • Mubeen AM, Ardekani B, Tagliati M, Alterman R, Dhawan V, Eidelberg D, Sidtis JJ (2018) Global and multi-focal changes in cerebral blood flow during subthalamic nucleus stimulation in Parkinson’s disease. J Cereb Blood Flow Metab 38:697–705

    Article  Google Scholar 

  • Munji RN, Daneman R (2020) Unexpected amount of blood-borne protein enters the young brain. Nature 583:362–363

    Article  CAS  Google Scholar 

  • Muñoz MF, Puebla M, Figueroa XF (2015) Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling. Front Cell Neurosci 9:59

    Article  Google Scholar 

  • Ngai AC, Winn HR (1995) Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res 77:832–840

    Article  CAS  Google Scholar 

  • Numan T, Bain AR, Hoiland RL, Smirl JD, Lewis NC, Ainslie PN (2014) Static autoregulation in humans: a review and reanalysis. Med Eng Phys 36:1487–1495

    Article  Google Scholar 

  • Oudegeest-Sander MH, van Beek AH, Abbink K, Olde Rikkert MG, Hopman MT, Claassen JA (2014) Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation. Exp Physiol 99:586–598

    Article  CAS  Google Scholar 

  • Ogoh S, Ainslie PN (2009) Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol (1985) 107:1370–1380

    Article  CAS  Google Scholar 

  • O’Regan M (2005) Adenosine and the regulation of cerebral blood flow. Neurol Res 27:175–181

    Article  Google Scholar 

  • Ortiz-Prado E, Natah S, Srinivasan S, Dunn JF (2010) A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO2. J Neurosci Methods 193:217–225

    Article  CAS  Google Scholar 

  • Panerai RB, Minhas JS, Llwyd O, Salinet ASM, Katsogridakis E, Maggio P, Robinson TG (2020) The critical closing pressure contribution to dynamic cerebral autoregulation in humans: influence of arterial partial pressure of CO2. J Physiol 598:5673–5685

    Article  CAS  Google Scholar 

  • Pearce WJ (2018) Fetal cerebrovascular maturation: effects of hypoxia. Semin Pediatr Neurol 28:17–28

    Article  Google Scholar 

  • Pelligrino DA, Wang Q, Koenig HM, Albrecht RF (1995) Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats. Brain Res 704:61–70

    Article  CAS  Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  Google Scholar 

  • Profaci CP, Munji RN, Pulido RS, Daneman R (2020) The blood-brain barrier in health and disease: important unanswered questions. J Exp Med 217:e20190062

    Article  Google Scholar 

  • Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J (2019) Adenosine and the cardiovascular system. Am J Cardiovasc Drugs 19:449–464

    Article  CAS  Google Scholar 

  • Rocic P, Schwartzman ML (2018) 20-HETE in the regulation of vascular and cardiac function. Pharmacol Ther 192:74–87

    Article  CAS  Google Scholar 

  • Roloff EV, Tomiak-Baquero AM, Kasparov S, Paton JF (2016) Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 594:6463–6485

    Article  CAS  Google Scholar 

  • Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185

    Article  CAS  Google Scholar 

  • Sato A, Sato Y, Uchida S (2004) Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat’s cortex and hippocampus. Neurosci Lett 361:90–93

    Article  CAS  Google Scholar 

  • Schaeffer S, Iadecola C (2021) Revisiting the neurovascular unit. Nat Neurosci 24:1198–1209

    Article  CAS  Google Scholar 

  • Segarra M, Aburto MR, Acker-Palmer A (2021) Blood-brain barrier dynamics to maintain brain homeostasis. Trends Neurosci 44:393–405

    Article  CAS  Google Scholar 

  • Shakhnovich AR, Serbinenko FA, Razumovsky AY, Rodionov IM, Oskolok LN (1980) The dependence of cerebral blood flow on mental activity and on emotional state in man. Neuropsychologia 18:465–476

    Article  CAS  Google Scholar 

  • Smith KJ, Ainslie PN (2017) Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol 102:1356–1371

    Article  CAS  Google Scholar 

  • Stobart JL, Lu L, Anderson HD, Mori H, Anderson CM (2013) Astrocyte-induced cortical vasodilation is mediated by D-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 110:3149–3154

    Article  CAS  Google Scholar 

  • Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    Article  CAS  Google Scholar 

  • Sun CW, Falck JR, Okamoto H, Harder DR, Roman RJ (2000) Role of cGMP versus 20-HETE in the vasodilator response to nitric oxide in rat cerebral arteries. Am J Physiol Heart Circ Physiol 279:H339–H350

    Article  CAS  Google Scholar 

  • Suzuki N, Hardebo JE (1993) The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5:33–46

    CAS  Google Scholar 

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78

    Article  CAS  Google Scholar 

  • Takahashi S (2022) Metabolic contribution and cerebral blood flow regulation by astrocytes in the neurovascular unit. Cell 11:813

    Article  CAS  Google Scholar 

  • Tan CO (2012) Defining the characteristic relationship between arterial pressure and cerebral flow. J Appl Physiol 1985(113):1194–1200

    Article  Google Scholar 

  • ter Laan M, van Dijk JM, Elting JW, Staal MJ, Absalom AR (2013) Sympathetic regulation of cerebral blood flow in humans: a review. Br J Anaesth 111:361–367

    Article  Google Scholar 

  • Thomas HJ, Rana U, Marsh CE, Caddy HT, Kelsey LJ, Smith KJ, Green DJ, Doyle BJ (2020) Assessment of cerebrovascular responses to physiological stimuli in identical twins using multimodal imaging and computational fluid dynamics. J Appl Physiol (1985) 129:1024–1032

    Article  CAS  Google Scholar 

  • Thompson JK, Peterson MR, Freeman RD (2003) Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299:1070–1072

    Article  CAS  Google Scholar 

  • Toussay X, Basu K, Lacoste B, Hamel E (2013) Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci 33:3390–3401

    Article  CAS  Google Scholar 

  • Tzeng YC, Ainslie PN (2014) Blood pressure regulation IX: cerebral autoregulation under blood pressure challenges. Eur J Appl Physiol 114:545–559

    Article  Google Scholar 

  • Uddin MA, Haq TU, Rafique MZ (2006) Cerebral venous system anatomy. J Pak Med Assoc 56:516–519

    Google Scholar 

  • Varga A, Di Leo G, Banga PV, Csobay-Novák C, Kolossváry M, Maurovich-Horvat P, Hüttl K (2019) Multidetector CT angiography of the circle of Willis: association of its variants with carotid artery disease and brain ischemia. Eur Radiol 29:46–56

    Article  Google Scholar 

  • Vinall PE, Simeone FA (1981) Cerebral autoregulation: an in vitro study. Stroke 12:640–642

    Article  CAS  Google Scholar 

  • von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524:3865–3895

    Article  Google Scholar 

  • Watanabe N, Sasaki S, Masamoto K, Hotta H (2018) Vascular gap junctions contribute to forepaw stimulation-induced vasodilation differentially in the pial and penetrating arteries in isoflurane-anesthetized rats. Front Mol Neurosci 11:446

    Article  CAS  Google Scholar 

  • Wenger RH, Kurtcuoglu V, Scholz CC, Marti HH, Hoogewijs D (2015) Frequently asked questions in hypoxia research. Hypoxia (Auckl) 3:35–43

    Article  Google Scholar 

  • Willie CK, Tzeng YC, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592:841–859

    Article  CAS  Google Scholar 

  • Wu H, Williams J, Nathans J (2014) Complete morphologies of basal forebrain cholinergic neurons in the mouse. elife 3:e02444

    Article  Google Scholar 

  • **ng CY, Tarumi T, Meijers RL, Turner M, Repshas J, **ong L, Ding K, Vongpatanasin W, Yuan LJ, Zhang R (2017) Arterial pressure, heart rate, and cerebral hemodynamics across the adult life span. Hypertension 69:712–720

    Article  CAS  Google Scholar 

  • Xu HL, Mao L, Ye S, Paisansathan C, Vetri F, Pelligrino DA (2008) Astrocytes are a key conduit for upstream signaling of vasodilation during cerebral cortical neuronal activation in vivo. Am J Physiol Heart Circ Physiol 294:H622–H632

    Article  CAS  Google Scholar 

  • Yang AC, Stevens MY, Chen MB, Lee DP, Stähli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L, Vest RT, Chaney A, Lehallier B, Olsson N, du Bois H, Hsieh R, Cropper HC, Berdnik D, Li L, Wang EY, Traber GM, Bertozzi CR, Luo J, Snyder MP, Elias JE, Quake SR, James ML, Wyss-Coray T (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430

    Article  CAS  Google Scholar 

  • Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J (2015) Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab 35:648–654

    Article  Google Scholar 

  • Zhang R, Crandall CG, Levine BD (2004) Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade. Stroke 35:843–847

    Article  CAS  Google Scholar 

  • Zhang Y, Kimelberg HK (2005) Neuroprotection by alpha 2-adrenergic agonists in cerebral ischemia. Curr Neuropharmacol 3:317–323

    Article  Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208

    Article  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y. (2022). Cerebral Vasoreactivity. In: Biology of Vascular Smooth Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-19-7122-8_18

Download citation

Publish with us

Policies and ethics

Navigation