Coronary Vasoreactivity

  • Chapter
  • First Online:
Biology of Vascular Smooth Muscle
  • 246 Accesses

Abstract

The heart has the highest O2 consumption rate of all of the organs in the body. The resting left ventricle extracts ~70–80% of the O2 delivered by the coronary circulation. Therefore, an increased myocardial O2 consumption depends primarily on increased coronary blood flow (CBF). Both under basal conditions and at increased cardiac activity, the CBF and the coronary vascular activities are regulated by coordinately activated mechanisms with the involvement of myogenic response, various endothelium-derived substances, local metabolites, and neuronal influence. The CBF is also constantly affected by the compressive force generated by the systolic and diastolic cycle of the heart, resulting in a predominant diastolic flow in the left ventricle and rendering the endocardium more vulnerable to ischemia. These unique characteristics of coronary circulation and the underlying mechanisms of the related changes in vasoreactivity will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 147.69
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amenta F, Coppola L, Gallo P, Ferrante F, Forlani A, Monopoli A, Napoleone P (1991) Autoradiographic localization of β-adrenergic receptors in human large coronary arteries. Circ Res 68:1591–1599

    Article  CAS  Google Scholar 

  • Baretella O, Vanhoutte PM (2016) Endothelium-dependent contractions: prostacyclin and endothelin-1, partners in crime? Adv Pharmacol 77:177–208

    Article  CAS  Google Scholar 

  • Baumgart D, Haude M, Gorge G, Liu F, Ge J, Grosse-Eggebrecht C, Erbel R, Heusch G (1999) Augmented alpha-adrenergic constriction of atherosclerotic human coronary arteries. Circulation 99:2090–2097

    Article  CAS  Google Scholar 

  • Bernal-Ramirez J, Díaz-Vesga MC, Talamilla M, Méndez A, Quiroga C, Garza-Cervantes JA, Lázaro-Alfaro A, Jerjes-Sanchez C, Henríquez M, García-Rivas G, Pedrozo Z (2021) Exploring functional differences between the right and left ventricles to better understand right ventricular dysfunction. Oxidative Med Cell Longev 2021:9993060

    Article  Google Scholar 

  • Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Phys 204:317–322

    Article  CAS  Google Scholar 

  • Beyer AM, Gutterman DD (2012) Regulation of the human coronary microcirculation. J Mol Cell Cardiol 52:814–821

    Article  CAS  Google Scholar 

  • Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, Mitchell M, Galdieri R, Sorokin A, Gutterman DD (2017) Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol 112:5

    Article  Google Scholar 

  • Bigler MR, Seiler C (2019) The human coronary collateral circulation, its extracardiac anastomoses and their therapeutic promotion. Int J Mol Sci 20:3726

    Article  Google Scholar 

  • Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O (2021) Mechanobiology of microvascular function and structure in health and disease: focus on the coronary circulation. Front Physiol 12:771960

    Article  Google Scholar 

  • Canty JM Jr (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    Article  Google Scholar 

  • Chabowski D, Gutterman D (2015) Unveiling the mechanism of coronary metabolic vasodilation: voltage-gated potassium channels and hydrogen peroxide. Circ Res 117:589–591

    Article  CAS  Google Scholar 

  • Chen H (2018) Role of thromboxane A2 signaling in endothelium-dependent contractions of arteries. Prostaglandins Other Lipid Mediat 134:32–37

    Article  CAS  Google Scholar 

  • Cheng J, Wen J, Wang N, Wang C, Xu Q, Yang Y (2019) Ion channels and vascular diseases. Arterioscler Thromb Vasc Biol 39:e146–e156

    Article  CAS  Google Scholar 

  • Chennupati R, Wirth A, Favre J, Li R, Bonnavion R, ** YJ, Wietelmann A, Schweda F, Wettschureck N, Henrion D, Offermanns S (2019) Myogenic vasoconstriction requires G12/G13 and LARG to maintain local and systemic vascular resistance. elife 8:e49374

    Article  Google Scholar 

  • Chilian WM (1990) Adrenergic vasomotion in the coronary microcirculation. Basic Res Cardiol 85(suppl 1):111–120

    Google Scholar 

  • Chilian WM, Boatwright RB, Shoji T, Griggs DM Jr (1981) Evidence against significant resting sympathetic coronary vasoconstrictor tone in the conscious dog. Circ Res 49:866–876

    Article  CAS  Google Scholar 

  • Cowan CL, McKenzie JE (1990) Cholinergic regulation of resting coronary blood flow in domestic swine. Am J Phys 259:H109–H115

    CAS  Google Scholar 

  • Crystal GJ, Pagel PS (2018) Right ventricular perfusion: physiology and clinical implications. Anesthesiology 128:202–218

    Article  Google Scholar 

  • Crystal GJ, Zhou X, Alam S, Piotrowski A, Hu G (2001) Lack of role for nitric oxide in cholinergic modulation of myocardial contractility in vivo. Am J Physiol Heart Circ Physiol 281:H198–H206

    Article  CAS  Google Scholar 

  • Cziráki A, Lenkey Z, Sulyok E, Szokodi I, Koller A (2020) L-arginine-nitric oxide-asymmetric dimethylarginine pathway and the coronary circulation: translation of basic science results to clinical practice. Front Pharmacol 11:569914

    Article  Google Scholar 

  • de Beer VJ, Taverne YJ, Kuster DW, Najafi A, Duncker DJ, Merkus D (2011) Prostanoids suppress the coronary vasoconstrictor influence of endothelin after myocardial infarction. Am J Physiol Heart Circ Physiol 301:H1080–H1089

    Article  Google Scholar 

  • de Waard GA, Cook CM, van Royen N, Davies JE (2018) Coronary autoregulation and assessment of stenosis severity without pharmacological vasodilation. Eur Heart J 39:4062–4071

    Article  Google Scholar 

  • Denn MJ, Stone HL (1976) Autonomic innervation of dog coronary arteries. J Appl Physiol 41:30–35

    Article  CAS  Google Scholar 

  • Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W (2012) Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52:794–801

    Article  CAS  Google Scholar 

  • Di Gioia G, Melin JA, De Bruyne B (2020) Coronary autoregulatory plateau in humans. J Am Coll Cardiol 76:1270–1271

    Article  Google Scholar 

  • Dou D, Zheng X, Liu J, Xu X, Ye L, Gao Y (2012) Hydrogen peroxide enhances vasodilatation by increasing dimerization of cGMP-dependent protein kinase type Iα. Circ J 76:1792–1798

    Article  CAS  Google Scholar 

  • Duffy SJ, Castle SF, Harper RW, Meredith IT (1999) Contribution of vasodilator prostanoids and nitric oxide to resting flow, metabolic vasodilation, and flow-mediated dilation in human coronary circulation. Circulation 100:1951–1957

    Article  CAS  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  Google Scholar 

  • Duncker DJ, Koller A, Merkus D, Canty JM Jr (2015) Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 57:409–422

    Article  Google Scholar 

  • Duncker DJ, Stubenitsky R, Verdouw PD (1998a) Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward beta-adrenergic control. Circ Res 82:1312–1322

    Article  CAS  Google Scholar 

  • Duncker DJ, Stubenitsky R, Verdouw PD (1998b) Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. Am J Phys 275:H1663–H1672

    CAS  Google Scholar 

  • Earley S, Brayden JE (2015) Transient receptor potential channels in the vasculature. Physiol Rev 95:645–690

    Article  CAS  Google Scholar 

  • Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD (2016) Endothelium-derived hyperpolarization and coronary vasodilation: diverse and integrated roles of epoxyeicosatrienoic acids, hydrogen peroxide, and gap junctions. Microcirculation 23:15–32

    Article  CAS  Google Scholar 

  • Feigl EO (2004) Berne’s adenosine hypothesis of coronary blood flow control. Am J Physiol Heart Circ Physiol 287:H1891–H1894

    Article  CAS  Google Scholar 

  • Feigl EO (1998) Neural control of coronary blood flow. J Vasc Res 35:85–92

    Article  CAS  Google Scholar 

  • Ferro G, Guinta A, Maione S, Carella G, Genovese A, Chiariello M (1984) Diastolic time during exercise in normal subjects and in patients with coronary artery disease. A plethysmographic study. Cardiology 71:266–272

    Article  CAS  Google Scholar 

  • Fleming I (2016) The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol 86:31–40

    Article  CAS  Google Scholar 

  • Fulton WFM (1963) Arterial anastomoses in the coronary circulation. I. Anatomical features in normal and diseased hearts demonstrated by stereoarteriography. Scottish Med J 8:420–434

    Article  CAS  Google Scholar 

  • Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nucleotid-Abbau im herzmuskel bei sauerstoffmangel und seine mögliche bedeutung für die coronardurchblutung. Naturwissenschaften 50:228–229

    Article  CAS  Google Scholar 

  • Giles TD, Sander GE, Nossaman BD, Kadowitz PJ (2012) Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich) 14:198–205

    Article  CAS  Google Scholar 

  • Godo S, Takahashi J, Yasuda S, Shimokawa H (2021) Endothelium in coronary macrovascular and microvascular diseases. J Cardiovasc Pharmacol 78(Suppl 6):S19–S29

    Article  CAS  Google Scholar 

  • Golshirazi AH, Etemad SG, Javanbakht V (2020) Three-dimensional numerical investigation of steady state and physiologically realistic pulsatile flow through the left coronary curved artery with stenosis. Theor Found Chem Eng 54:489–499

    Article  Google Scholar 

  • Goodwill AG, Dick GM, Kiel AM, Tune JD (2017) Regulation of coronary blood flow. Compr Physiol 7:321–382

    Article  Google Scholar 

  • Gorman MW, Tune JD, Richmond KN, Feigl EO (2000) Quantitative analysis of feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol 89:1903–1911

    Article  CAS  Google Scholar 

  • Grainger N, Santana LF (2020) Metabolic-electrical control of coronary blood flow. Proc Natl Acad Sci U S A 117:8231–8233

    Article  CAS  Google Scholar 

  • Gremels H, Starling EH (1926) On the influence of hydrogen ion concentration and of anoxaemia upon the heart volume. J Physiol 61:297–304

    Article  CAS  Google Scholar 

  • Griggs DM Jr, Chilian WM, Boatwright RB, Shoji T, Williams DO (1984) Evidence against significant resting alpha-adrenergic coronary vasoconstrictor tone. Fed Proc 43:2873–2877

    Google Scholar 

  • Guieu R, Deharo JC, Maille B, Crotti L, Torresani E, Brignole M, Parati G (2020) Adenosine and the cardiovascular system: the good and the bad. J Clin Med 9:1366

    Article  CAS  Google Scholar 

  • Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM (2016) The human microcirculation: regulation of flow and beyond. Circ Res 118:157–172

    Article  CAS  Google Scholar 

  • Guyton RA, McClenathan JH, Newman GE, Michaelis LL (1977) Significance of subendocardial S-T segment elevation caused by coronary stenosis in the dog. Epicardial S-T segment depression, local ischemia and subsequent necrosis. Am J Cardiol 40:373–380

    Article  CAS  Google Scholar 

  • Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–1448

    Article  Google Scholar 

  • Hart BJ, Bian X, Gwirtz PA, Setty S, Downey HF (2001) Right ventricular oxygen supply/demand balance in exercising dogs. Am J Physiol Heart Circ Physiol 281:H823–H830

    Article  CAS  Google Scholar 

  • Hilton, Eichholtz (1925) The influence of chemical factors on the coronary circulation. J Physiol 59:413–425

    Article  CAS  Google Scholar 

  • Hoffman JI, Buckberg GD (2014) The myocardial oxygen supply: demand index revisited. J Am Heart Assoc 3:e000285

    Article  Google Scholar 

  • Hong KS, Kim K, Hill MA (2020) Regulation of blood flow in small arteries: Mechanosensory events underlying myogenic vasoconstriction. J Exerc Rehabil 16:207–215

    Article  Google Scholar 

  • Hu Y, Chen M, Wang M, Li X (2022) Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 32:61–70

    Article  CAS  Google Scholar 

  • Husmann L, Leschka S, Desbiolles L, Schepis T, Gaemperli O, Seifert B, Cattin P, Frauenfelder T, Flohr TG, Marincek B, Kaufmann PA, Alkadhi H (2007) Coronary artery motion and cardiac phases: dependency on heart rate-implications for CT image reconstruction. Radiology 245:567–576

    Article  Google Scholar 

  • Ikumi Y, Shiroto T, Godo S, Saito H, Tanaka S, Ito A, Kajitani S, Monma Y, Miyata S, Tsutsui M, Shimokawa H (2020) Important roles of endothelium-dependent hyperpolarization in coronary microcirculation and cardiac diastolic function in mice. J Cardiovasc Pharmacol 75:31–40

    Article  CAS  Google Scholar 

  • Ishibashi Y, Duncker DJ, Zhang J, Bache RJ (1998) ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82:346–359

    Article  CAS  Google Scholar 

  • Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638

    Article  CAS  Google Scholar 

  • Jackson WF (2021) Myogenic tone in peripheral resistance arteries and arterioles: the pressure is on! Front Physiol 12:699517

    Article  Google Scholar 

  • Johnson NP, Gould KL, De Bruyne B (2021) Autoregulation of coronary blood supply in response to demand: JACC review topic of the week. J Am Coll Cardiol 77:2335–2345

    Article  Google Scholar 

  • Jones CJ, Kuo L, Davis MJ, Chilian WM (1995) Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Re 29:585–596

    Article  CAS  Google Scholar 

  • Kanatsuka H, Lam** KG, Eastham CL, Marcus ML (1990) Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ Res 66:389–396

    Article  CAS  Google Scholar 

  • Klassen GA, Armour JA (1984) Coronary venous pressure and flow: effects of vagal stimulation, aortic occlusion, and vasodilators. Can J Physiol Pharmacol 62:531–538

    Article  CAS  Google Scholar 

  • Koller A, Laughlin MH, Cenko E, de Wit C, Tóth K, Bugiardini R, Trifunovits D, Vavlukis M, Manfrini O, Lelbach A, Dornyei G, Padro T, Badimon L, Tousoulis D, Gielen S, Duncker DJ (2022) Functional and structural adaptations of the coronary macro- and microvasculature to regular aerobic exercise by activation of physiological, cellular, and molecular mechanisms: ESC working group on coronary pathophysiology and microcirculation position paper. Cardiovasc Res 118:357–371

    Article  CAS  Google Scholar 

  • Kroll K, Stepp DW (1996) Adenosine kinetics in canine coronary circulation. Am J Phys 270:H1469–H1483

    CAS  Google Scholar 

  • Kuo L, Arko F, Chilian WM, Davis MJ (1993) Coronary venular responses to flow and pressure. Circ Res 72:607–615

    Article  CAS  Google Scholar 

  • Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866

    Article  CAS  Google Scholar 

  • Kuo L, Davis MJ, Chilian WM (1988) Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Phys 255:H1558–H1562

    CAS  Google Scholar 

  • Larsen BT, Gutterman DD, Sato A, Toyama K, Campbell WB, Zeldin DC, Manthati VL, Falck JR, Miura H (2008) Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ Res 102:59–67

    Article  CAS  Google Scholar 

  • Lee J, Smith NP (2012) The multi-scale modelling of coronary blood flow. Ann Biomed Eng 40:2399–2413

    Article  Google Scholar 

  • Liu C, Montell C (2015) Forcing open TRP channels: mechanical gating as a unifying activation mechanism. Biochem Biophys Res Commun 460:22–25

    Article  CAS  Google Scholar 

  • Liu S, Lin Z (2021) Vascular smooth muscle cells mechanosensitive regulators and vascular remodeling. J Vasc Res 22:1–24

    Google Scholar 

  • Loukas M, Bilinsky S, Bilinsky E, el-Sedfy A, Anderson RH (2009) Cardiac veins: a review of the literature. Clin Anat 22:129–145

    Article  Google Scholar 

  • Loukas M, Sharma A, Blaak C, Sorenson E, Mian A (2013) The clinical anatomy of the coronary arteries. J Cardiovasc Transl Res 6:197–207

    Article  Google Scholar 

  • Lu T, Wang XL, Chai Q, Sun X, Sieck GC, Katusic ZS, Lee HC (2017) Role of the endothelial caveolae microdomain in shear stress-mediated coronary vasorelaxation. J Biol Chem 292:19013–19023

    Article  CAS  Google Scholar 

  • Maxwell M, Hearse D, Yellon D (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21:737–746

    Article  CAS  Google Scholar 

  • Merkus D, Houweling B, Zarbanoui A, Duncker DJ (2004) Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary, and coronary vascular tone in exercising swine. Am J Physiol Heart Circ Physiol 286:H1114–H1123

    Article  CAS  Google Scholar 

  • Miller FJ, Dellsperger KC, Gutterman DD (1997) Myogenic constriction of human coronary arterioles. Am J Physiol Heart Circ Physiol 273:H257–H264

    Article  CAS  Google Scholar 

  • Miura H, Wachtel RE, Liu Y, Loberiza FR Jr, Saito T, Miura M, Gutterman DD (2001) Flow-induced dilation of human coronary arterioles: important role of Ca2+-activated K+ channels. Circulation 103:1992–1998

    Article  CAS  Google Scholar 

  • Murphree SS, Saffitz JE (1988) Delineation of the distribution of beta-adrenergic receptor subtypes in canine myocardium. Circ Res 63:117–125

    Article  CAS  Google Scholar 

  • Namani R, Kassab GS, Lanir Y (2018) Integrative model of coronary flow in anatomically based vasculature under myogenic, shear, and metabolic regulation. J Gen Physiol 150:145–168

    Article  CAS  Google Scholar 

  • Nishijima Y, Cao S, Chabowski DS, Korishettar A, Ge A, Zheng X, Sparapani R, Gutterman DD, Zhang DX (2017) Contribution of KV1.5 channel to hydrogen peroxide-induced human arteriolar dilation and its modulation by coronary artery disease. Circ Res 120:658–669

    Article  CAS  Google Scholar 

  • Nishikawa Y, Ogawa S (1997) Importance of nitric oxide in the coronary artery at rest and during pacing in humans. J Am Coll Cardiol 29:85–92

    Article  CAS  Google Scholar 

  • Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Kmetz J, Bratz I, Luli J, Nagane M, Khan N, Hou H, Kuppusamy P, Graham J, Fu FK, Janota D, Oyewumi MO, Logan S, Lindner JR, Chilian WM (2015) Requisite role of Kv1.5 channels in coronary metabolic dilation. Circ Res 117:612–621

    Article  CAS  Google Scholar 

  • Opie LH, Heusch G (2004) Oxygen supply: coronary flow. In: Opie LH (ed) Heart physiology: from cell to circulation, 4th edn. Lippincott, Williams & Wilkins, Philadelphia, PA, pp 279–305

    Google Scholar 

  • Phan TX, Ton HT, Gulyás H, Pórszász R, Tóth A, Russo R, Kay MW, Sahibzada N, Ahern GP (2022) TRPV1 in arteries enables a rapid myogenic tone. J Physiol 600:1651–1666

    Article  CAS  Google Scholar 

  • Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, Escaned J, Koller A, Piek JJ, de Wit C (2015) Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 36:3134–3146

    Article  CAS  Google Scholar 

  • Qi H, Zheng X, Qin X, Dou D, Xu H, Raj JU, Gao Y (2007) PKG regulates the basal tension and plays a major role in nitrovasodilator-induced relaxation of porcine coronary veins. Br J Pharmacol 152:1060–1069

    Article  CAS  Google Scholar 

  • Qin X, Zheng X, Qi H, Dou D, Raj JU, Gao Y (2007) cGMP-dependent protein kinase in regulation of basal tone and in nitroglycerin and nitric oxide induced relaxation in porcine coronary artery. Pflügers Arch - Eur J Physiol 454:913–923

    Article  CAS  Google Scholar 

  • Ren LM, Nakane T, Chiba S (1993) Muscarinic receptor subtypes mediating vasodilation and vasoconstriction in isolated, perfused simian coronary arteries. J Cardiovasc Pharmacol 22:841–846

    Article  CAS  Google Scholar 

  • Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621

    Article  CAS  Google Scholar 

  • Schlesinger MJ (1938) An injection plus dissection study of coronary artery occlusions and anastomoses. Am Heart J 15:528–568

    Article  Google Scholar 

  • Seiler C, Stoller M, Pitt B, Meier P (2013) The human coronary collateral circulation: development and clinical importance. Eur Heart J 34:2674–2682

    Article  CAS  Google Scholar 

  • Shimokawa H (2014) 2014 Williams Harvey lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J 35:3180–3193

    Article  CAS  Google Scholar 

  • Shimokawa H (2020) Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and rho-kinase. J Clin Biochem Nutr 66:83–91

    Article  CAS  Google Scholar 

  • Sirajuddin A, Chen MY, White CS, Arai AE (2020) Coronary venous anatomy and anomalies. J Cardiovasc Comput Tomogr 14:80–86

    Article  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103:16586–16591

    Article  CAS  Google Scholar 

  • Stepp DW, Merkus D, Nishikawa Y, Chilian WM (2001) Nitric oxide limits coronary vasoconstriction by a shear stress-dependent mechanism. Am J Physiol Heart Circ Physiol 281:H796–H803

    Article  CAS  Google Scholar 

  • Tune JD (2014) Coronary circulation. Morgan and Claypool Life Sciences, San Rafael, CA

    Google Scholar 

  • Tune JD, Richmond KN, Gorman MW, Feigl EO (2000a) Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation 101:2942–2948

    Article  CAS  Google Scholar 

  • Tune JD, Richmond KN, Gorman MW, Olsson RA, Feigl EO (2000b) Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise. Am J Physiol Heart Circ Physiol 278:H74–H84

    Article  CAS  Google Scholar 

  • Tune JD, Goodwill AG, Kiel AM, Baker HE, Bender SB, Merkus D, Duncker DJ (2020) Disentangling the Gordian knot of local metabolic control of coronary blood flow. Am J Physiol Heart Circ Physiol 318:H11–H24

    Article  CAS  Google Scholar 

  • Turkevich D, Micco A, Reeves JT (1988) Noninvasive measurement of the decrease in left ventricular filling time during maximal exercise in normal subjects. Am J Cardiol 62:650–652

    Article  CAS  Google Scholar 

  • Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100:2793–2799

    Article  CAS  Google Scholar 

  • Vanhoutte PM, Zhao Y, Xu A, Leung SW (2016) Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res 119:375–396

    Article  CAS  Google Scholar 

  • Walker LA, Buttrick PM (2013) The right ventricle: biologic insights and response to disease: updated. Curr Cardiol Rev 9:73–81

    Google Scholar 

  • Wen JY, Zhang J, Chen S, Chen Y, Zhang Y, Ma ZY, Zhang F, **e WM, Fan YF, Duan JS, Chen ZW (2021) Endothelium-derived hydrogen sulfide acts as a hyperpolarizing factor and exerts neuroprotective effects via activation of large-conductance Ca2+-activated K+ channels. Br J Pharmacol 178:4155–4175

    Article  CAS  Google Scholar 

  • Wexels JC, Myhre ES, Mjos OD (1985) Effects of carbon dioxide and pH on myocardial blood-flow and metabolism in the dog. Clin Physiol 5:575–588

    Article  CAS  Google Scholar 

  • Wiecha J, Schläger B, Voisard R, Hannekum A, Mattfeldt T, Hombach V (1997) Ca2+-activated K+ channels in human smooth muscle cells of coronary atherosclerotic plaques and coronary media segments. Basic Res Cardiol 92:233–239

    Article  CAS  Google Scholar 

  • Ying L, Xu X, Liu J, Dou D, Yu X, Ye L, He Q, Gao Y (2012) Heterogeneity in relaxation of different sized porcine coronary arteries to nitrovasodilators: role of PKG and MYPT1. Pflügers Arch - Eur J Physiol 463:257–268

    Article  CAS  Google Scholar 

  • Yonekura S, Watanabe N, Downey HF (1988) Transmural variation in autoregulation of right ventricular blood flow. Circ Res 62:776–781

    Article  CAS  Google Scholar 

  • Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z (2021) Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 116:22

    Article  CAS  Google Scholar 

  • Zhao G, Joca HC, Nelson MT, Lederer WJ (2020) ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A 117:7461–7470

    Article  CAS  Google Scholar 

  • Zong P, Tune JD, Downey HF (2005) Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood) 230:507–519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, Y. (2022). Coronary Vasoreactivity. In: Biology of Vascular Smooth Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-19-7122-8_17

Download citation

Publish with us

Policies and ethics

Navigation