Process Parameters and Their Effect During Electrochemical Discharge Machining: A Review

  • Chapter
  • First Online:
Emerging Trends in Mechanical and Industrial Engineering

Abstract

Glass and ceramics use is widespread in producing micro-components. The production of micro-components necessitates the development of micromachining processes. Machining such non-conductive materials by traditional micromachining methods faces some machinability challenges. Electrochemical discharge machining (ECDM) has emerged as an inexpensive and potential micromachining method for such non-conductive materials. It overcomes limitations and caters to the benefits of both constituent processes, i.e., electric discharge machining and electrochemical machining. The controlling of gas film formation and discharge activity are major limitations in universal industrial acceptance of this technique. Researchers have carried out numerous experimental and simulation studies to explore the physics behind the process. In view of appraising research carried out during the last two decades, the present work identifies various process parameters that affect process performance. This article reports a comprehensive review of their effect on response characteristics of the electrochemical discharge machining process. A detailed cause-and-effect diagram of process parameters and response characteristics with a typical ECDM setup is also introduced in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao S, Huang H (2017) Recent advances in micro- and nano-machining technologies. Front Mech Eng 12:18–32. https://doi.org/10.1007/s11465-017-0410-9

    Article  Google Scholar 

  2. Essa K, Modica F, Imbaby M et al (2017) Manufacturing of metallic micro-components using hybrid soft lithography and micro-electrical discharge machining. Int J Adv Manuf Technol 91:445–452. https://doi.org/10.1007/s00170-016-9655-4

    Article  Google Scholar 

  3. Kumar N, Mandal N, Das AK (2020) Micro-machining through electrochemical discharge processes: a review. Mater Manuf Process 35:363–404. https://doi.org/10.1080/10426914.2020.1711922

  4. Ghosh A (1997) Electrochemical discharge machining: principle and possibilities. Sadhana—Acad Proc Eng Sci 22:435–447. https://doi.org/10.1007/BF02744482

  5. Jain VK, Choudhury SK, Ramesh KM (2002) On the machining of alumina and glass. Int J Mach Tools Manuf 42:1269–1276. https://doi.org/10.1016/S0032-3861(02)00241-0

    Article  Google Scholar 

  6. Gupta PK, Dvivedi A, Kumar P (2016) Effect of pulse duration on quality characteristics of blind hole drilled in glass by ECDM. Mater Manuf Process 31:1740–1748. https://doi.org/10.1080/10426914.2015.1103857

    Article  Google Scholar 

  7. McGeough JA, Khayry ABM, Munro W, Crookall JR (1983) Theoretical and experimental investigation of the relative effects of spark erosion and electrochemical dissolution in electrochemical ARC machining. CIRP Ann Manuf Technol 32:113–118. https://doi.org/10.1016/S0007-8506(07)63373-3

    Article  Google Scholar 

  8. Khairy ABE, McGeough JA (1990) Die-sinking by electroerosion-dissolution machining. CIRP Ann Manuf Technol 39:191–195. https://doi.org/10.1016/S0007-8506(07)61033-6

    Article  Google Scholar 

  9. Jalali M, Maillard P, Wüthrich R (2009) Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges. J Micromechanics Microengineering 19:045001. https://doi.org/10.1088/0960-1317/19/4/045001

    Article  Google Scholar 

  10. Didar TF, Dolatabadi A, Wüthrich R (2008) Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity. J Micromechanics Microengineering 18. https://doi.org/10.1088/0960-1317/18/6/065016

  11. Peng WY, Liao YS (2004) Study of electrochemical discharge machining technology for slicing non-conductive brittle materials. J Mater Process Technol 149:363–369. https://doi.org/10.1016/j.jmatprotec.2003.11.054

    Article  Google Scholar 

  12. Jain VK, Chak SK (2000) Electrochemical spark trepanning of alumina and quartz. Mach Sci Technol 4:277–290. https://doi.org/10.1080/10940340008945710

    Article  Google Scholar 

  13. Fascio V, Langen HH, Bleuler H, Comninellis C (2003) Investigations of the spark assisted chemical engraving. Electrochem commun 5:203–207. https://doi.org/10.1016/S1388-2481(03)00018-3

    Article  Google Scholar 

  14. Schöpf M, Beltrami I, Boccadoro M et al (2001) ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal-bonded diamond grinding tools. CIRP Ann Manuf Technol 50:125–128. https://doi.org/10.1016/S0007-8506(07)62086-1

    Article  Google Scholar 

  15. Cao XD, Kim BH, Chu CN (2009) Micro-structuring of glass with features less than 100 μm by electrochemical discharge machining. Precis Eng 33:459–465. https://doi.org/10.1016/j.precisioneng.2009.01.001

    Article  Google Scholar 

  16. Wüthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon—an overview. Int J Mach Tools Manuf 45:1095–1108. https://doi.org/10.1016/j.ijmachtools.2004.11.011

    Article  Google Scholar 

  17. Wüthrich R, Spaelter U, Bleuler H (2006) The current signal in spark-assisted chemical engraving (SACE): what does it tell us? J Micromechanics Microengineering 16:779–785. https://doi.org/10.1088/0960-1317/16/4/014

    Article  Google Scholar 

  18. Wüthrich R, Ziki JDA (2014) Micromachining using electrochemical discharge phenomenon: fundamentals and application of spark assisted chemical engraving, 2nd edn. Elsevier, Oxford

    Google Scholar 

  19. Wüthrich R, Hof LA (2006) The gas film in spark assisted chemical engraving (SACE)—a key element for micro-machining applications. Int J Mach Tools Manuf 46:828–835. https://doi.org/10.1016/j.ijmachtools.2005.07.029

    Article  Google Scholar 

  20. Xu Y, Chen J, Jiang B, Ni J (2018) Investigation of micro-drilling using electrochemical discharge machining with counter resistant feeding. J Mater Process Technol 257:141–147. https://doi.org/10.1016/j.jmatprotec.2018.02.023

    Article  Google Scholar 

  21. Singh T, Dvivedi A (2016) Developments in electrochemical discharge machining: a review on electrochemical discharge machining, process variants and their hybrid methods. Int J Mach Tools Manuf 105:1–13. https://doi.org/10.1016/j.ijmachtools.2016.03.004

    Article  Google Scholar 

  22. Gautam N, Jain VK (1998) Experimental investigations into ECSD process using various tool kinematics. Int J Mach Tools Manuf 38:15–27. https://doi.org/10.1016/S0890-6955(98)00034-0

    Article  Google Scholar 

  23. Goud M, Sharma AK, Jawalkar C (2016) A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate. Precis Eng 45:1–17. https://doi.org/10.1016/j.precisioneng.2016.01.007

    Article  Google Scholar 

  24. Basak I, Ghosh A (1996) Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification. J Mater Process Technol 62:46–53. https://doi.org/10.1016/0924-0136(95)02202-3

    Article  Google Scholar 

  25. Krötz H, Roth R, Wegener K (2013) Experimental investigation and simulation of heat flux into metallic surfaces due to single discharges in micro-electrochemical arc machining (micro-ECAM). Int J Adv Manuf Technol 68:1267–1275. https://doi.org/10.1007/s00170-013-4918-9

    Article  Google Scholar 

  26. Paul L, Korah LV (2016) Effect of power source in ECDM process with FEM modeling. Procedia Technol 25:1175–1181. https://doi.org/10.1016/j.protcy.2016.08.236

    Article  Google Scholar 

  27. Behroozfar A, Razfar MR (2016) Experimental study of the tool wear during the electrochemical discharge machining. Mater Manuf Process 31:574–580. https://doi.org/10.1080/10426914.2015.1004685

    Article  Google Scholar 

  28. Fascio V, Wüthrich R, Bleuler H (2004) Spark assisted chemical engraving in the light of electrochemistry. Electrochim Acta 49:3997–4003. https://doi.org/10.1016/j.electacta.2003.12.062

    Article  Google Scholar 

  29. Sarkar BR, Doloi B, Bhattacharyya B (2006) Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int J Adv Manuf Technol 28:873–881. https://doi.org/10.1007/s00170-004-2448-1

    Article  Google Scholar 

  30. Sharma P, Mishra DK, Dixit P (2020) Experimental investigations into alumina ceramic micromachining by electrochemical discharge machining process. Procedia Manuf 48:244–250. https://doi.org/10.1016/j.promfg.2020.05.044

    Article  Google Scholar 

  31. Rajput V, Goud M, Suri NM (2021) Three-dimensional finite element modeling and response surface based multi-response optimization during silica drilling with closed-loop ECDM. SILICON 13:3583–3609. https://doi.org/10.1007/s12633-020-00867-7

    Article  Google Scholar 

  32. Jiang B, Lan S, Wilt K, Ni J (2015) Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process. Int J Mach Tools Manuf 90:8–15. https://doi.org/10.1016/j.ijmachtools.2014.11.006

    Article  Google Scholar 

  33. Jiang B, Lan S, Ni J, Zhang Z (2014) Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials. J Mater Process Technol 214:892–898. https://doi.org/10.1016/j.jmatprotec.2013.12.005

    Article  Google Scholar 

  34. Kulkarni AV (2007) Electrochemical discharge machining process. Def Sci J 57:765–770. https://doi.org/10.14429/dsj.64.1812

  35. Kolhekar KR, Sundaram M (2016) A study on the effect of electrolyte concentration on surface integrity in micro electrochemical discharge machining. Procedia CIRP 45:355–358. https://doi.org/10.1016/j.procir.2016.02.146

    Article  Google Scholar 

  36. Gupta PK, Bhamu JP, Rajoria CS et al (2016) Effect of duty ratio at different pulse frequency during hole drilling in ceramics using electrochemical discharge machining. MATEC Web Conf 77. https://doi.org/10.1051/matecconf/20167710004

  37. Kim DJ, Ahn Y, Lee SH, Kim YK (2006) Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass. Int J Mach Tools Manuf 46:1064–1067. https://doi.org/10.1016/j.ijmachtools.2005.08.011

    Article  Google Scholar 

  38. Gupta PK (2015) PhD thesis—investigations on ECDM for subtractive microfabrication on glass. Indian Institute of Technology, Roorkee, India

    Google Scholar 

  39. Verma AK, Mishra DK, Pawar K, Dixit P (2020) Investigations into surface topography of glass microfeatures formed by pulsed electrochemical discharge milling for microsystem applications. Microsyst Technol 26:2105–2116. https://doi.org/10.1007/s00542-020-04770-4

    Article  Google Scholar 

  40. West J, Jadhav A (2007) ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities. J Micromech Microeng 17:403–409. https://doi.org/10.1088/0960-1317/17/2/028

    Article  Google Scholar 

  41. Jain VK, Adhikary S (2008) On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions. J Mater Process Technol 200:460–470. https://doi.org/10.1016/j.jmatprotec.2007.08.071

    Article  Google Scholar 

  42. Arab J, Mishra DK, Kannojia HK et al (2019) Fabrication of multiple through-holes in non-conductive materials by electrochemical discharge machining for RF MEMS packaging. J Mater Process Technol 271:542–553. https://doi.org/10.1016/j.jmatprotec.2019.04.032

    Article  Google Scholar 

  43. Chak SK, Rao PV (2014) Machining of SiC by ECDM process using different electrode configurations under the effect of pulsed DC. Int J Manuf Technol Manag 28:39–56. https://doi.org/10.1504/IJMTM.2014.064629

    Article  Google Scholar 

  44. Rajput V, Goud M, Suri NM (2021) Finite element modeling for comparing the machining performance of different electrolytes in ECDM. Arab J Sci Eng 46:2097–2119. https://doi.org/10.1007/s13369-020-05009-0

    Article  Google Scholar 

  45. Arab J, Mishra DK, Dixit P (2021) Measurement and analysis of the geometric characteristics of microholes and tool wear for varying tool-workpiece gaps in electrochemical discharge drilling. Meas J Int Meas Confed 168:108463. https://doi.org/10.1016/j.measurement.2020.108463

    Article  Google Scholar 

  46. Kamaraj AB, Jui SK, Cai Z, Sundaram MM (2015) A mathematical model to predict overcut during electrochemical discharge machining. Int J Adv Manuf Technol 81:685–691. https://doi.org/10.1007/s00170-015-7208-x

    Article  Google Scholar 

  47. Bhondwe KL, Yadava V, Kathiresan G (2006) Finite element prediction of material removal rate due to electro-chemical spark machining. Int J Mach Tools Manuf 46:1699–1706. https://doi.org/10.1016/j.ijmachtools.2005.12.005

    Article  Google Scholar 

  48. Mishra DK, Arab J, Magar Y, Dixit P (2019) High aspect ratio glass micromachining by multi-pass electrochemical discharge based micromilling technique. ECS J Solid State Sci Technol 8:322–331. https://doi.org/10.1149/2.0191906jss

    Article  Google Scholar 

  49. Kulkarni A, Sharan R, Lal GK (2002) An experimental study of discharge mechanism in electrochemical discharge machining. Int J Mach Tools Manuf 42:1121–1127. https://doi.org/10.1016/S0890-6955(02)00058-5

    Article  Google Scholar 

  50. Kolhekar K, Sundaram M (2019) A multiphase simulation study of electrochemical discharge machining of glass. Int J Adv Manuf Technol 105:1597–1608. https://doi.org/10.1007/s00170-019-04318-5

    Article  Google Scholar 

  51. Gupta PK (2018) Effect of electrolyte level during electro chemical discharge machining of glass. J Electrochem Soc 165:E279–E281. https://doi.org/10.1149/2.1021807jes

    Article  Google Scholar 

  52. Chen JC, Lin YA, Kuo CL et al (2019) An improvement in the quality of holes drilled in quartz glassby electrochemical discharge machining. Smart Sci 7:169–174. https://doi.org/10.1080/23080477.2019.1597579

    Article  Google Scholar 

  53. Ziki JDA, Wüthrich R (2012) Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving. Int J Adv Manuf Technol 61:481–486. https://doi.org/10.1007/s00170-011-3731-6

    Article  Google Scholar 

  54. Singh T, Dvivedi A (2018) On pressurized feeding approach for effective control on working gap in ECDM. Mater Manuf Process 33:462–473. https://doi.org/10.1080/10426914.2017.1339319

    Article  Google Scholar 

  55. Singh T, Dvivedi A (2018) On performance evaluation of textured tools during micro-channeling with ECDM. J Manuf Process 32:699–713. https://doi.org/10.1016/j.jmapro.2018.03.033

    Article  Google Scholar 

  56. Razfar MR, Behroozfar A, Ni J (2014) Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass. Precis Eng 38:885–892. https://doi.org/10.1016/j.precisioneng.2014.05.004

    Article  Google Scholar 

  57. Yang CK, Wu KL, Hung JC et al (2011) Enhancement of ECDM efficiency and accuracy by spherical tool electrode. Int J Mach Tools Manuf 51:528–535. https://doi.org/10.1016/j.ijmachtools.2011.03.001

    Article  Google Scholar 

  58. Han MS, Min BK, Lee SJ (2011) Micro-electrochemical discharge cutting of glass using a surface-textured tool. CIRP J Manuf Sci Technol 4:362–369. https://doi.org/10.1016/j.cirpj.2011.06.007

    Article  Google Scholar 

  59. Mishra DK, Verma AK, Arab J et al (2019) Numerical and experimental investigations into microchannel formation in glass substrate using electrochemical discharge machining. J Micromechanics Microengineering 29:075004. https://doi.org/10.1088/1361-6439/ab1da7

    Article  Google Scholar 

  60. Singh YP, Jain VK, Kumar P, Agrawal DC (1996) Machining piezoelectric (PZT) ceramics using an electrochemical spark machining (ECSM) process. J Mater Process Technol 58:24–31. https://doi.org/10.1016/0924-0136(95)02102-7

    Article  Google Scholar 

  61. Nesarikar V V., Jain VK, Choudhury SK (1994) Traveling wire electrochemical spark machining of thick sheets of Kevlar-Epoxy composites. In: Proceedings of the sixteenth AIMTDR conference, pp 672–677

    Google Scholar 

  62. Arab J, Mishra DK, Dixit P (2020) Role of tool-substrate gap in the micro-holes formation by electrochemical discharge machining. Procedia Manuf 48:492–497. https://doi.org/10.1016/j.promfg.2020.05.073

    Article  Google Scholar 

  63. Jain VK, Dixit PM, Pandey PM (1999) On the analysis of the electrochemical spark machining process. Int J Mach Tools Manuf 39:165–186. https://doi.org/10.1016/S0890-6955(98)00010-8

    Article  Google Scholar 

  64. Goud M, Sharma AK (2017) A three-dimensional finite element simulation approach to analyze material removal in electrochemical discharge machining. Proc Inst Mech Eng Part C J Mech Eng Sci 231:2417–2428. https://doi.org/10.1177/0954406216636167

    Article  Google Scholar 

  65. Wei C, Xu K, Ni J et al (2011) A finite element based model for electrochemical discharge machining in discharge regime. Int J Adv Manuf Technol 54:987–995. https://doi.org/10.1007/s00170-010-3000-0

    Article  Google Scholar 

  66. Hajian M, Razfar MR, Movahed S, Hemasian Etefagh A (2018) Experimental and numerical investigations of machining depth for glass material in electrochemical discharge milling. Precis Eng 51:521–528. https://doi.org/10.1016/j.precisioneng.2017.10.007

    Article  Google Scholar 

  67. Behroozfar A, Razfar MR (2016) Experimental and numerical study of material removal in electrochemical discharge machining (ECDM). Mater Manuf Process 31:495–503. https://doi.org/10.1080/10426914.2015.1058951

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahaveer Prasad Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M.P., Gupta, P.K., Kumar, G. (2023). Process Parameters and Their Effect During Electrochemical Discharge Machining: A Review. In: Li, X., Rashidi, M.M., Lather, R.S., Raman, R. (eds) Emerging Trends in Mechanical and Industrial Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-6945-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6945-4_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6944-7

  • Online ISBN: 978-981-19-6945-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation