Alginate Based Scaffolds in Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Alginate Biomaterial

Abstract

Regenerative medicine and tissue engineering appears as a new hope to biomedical world applying the principles of both science and medicine for regrowth of the injured tissue and organs of human body. Alginate is a negatively charged naturally occurring polysaccharide which has profound biomedical utilizations including drug delivery, tissue engineering, healing of different wounded tissues etc. Alginate possesses some attractive behaviors of non-toxicity, biocompatibility and gel forming ability. But owning to few difficulties, Alginate is modified easily by blending it with different other substances (both natural and synthetic materials) via different physiochemical crosslinking techniques. Oxidation of Alginate can be carried out to change its characteristics. As a result of such modifications, the alginate-based constructs are developed with improved cellular activity and mechanical strength which reflect their applications as a good scaffolding substance to mimic the corresponding ECM of the native tissue and restore its original functions. This book chapter gives almost detailed information of the structure properties of Alginate based materials and its applications in tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abouzeid RE et al (2018) Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering. Biomacromolecules 19(11):4442–4452

    Article  CAS  Google Scholar 

  • Ahmad Z, Khuller G (2008) Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin Drug Deliv 5(12):1323–1334

    Article  CAS  Google Scholar 

  • Almeida HV et al (2017) Anisotropic shape-memory alginate scaffolds functionalized with either type I or type II collagen for cartilage tissue engineering. Tissue Eng A 23(1–2):55–68

    Article  CAS  Google Scholar 

  • Alnaief M et al (2011) Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydr Polym 84(3):1011–1018

    Article  CAS  Google Scholar 

  • Bagher Z et al (2021) Hesperidin promotes peripheral nerve regeneration based on tissue engineering strategy using alginate/chitosan hydrogel: in vitro and in vivo study. Int J Polym Mater Polym Biomater 70(5):299–308

    Article  CAS  Google Scholar 

  • Balakrishnan B et al (2014) Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 10(8):3650–3663

    Article  CAS  Google Scholar 

  • Baniasadi H et al (2016) Design, fabrication and characterization of oxidized alginate–gelatin hydrogels for muscle tissue engineering applications. J Biomater Appl 31(1):152–161

    Article  CAS  Google Scholar 

  • Berthiaume F, Maguire TJ, Yarmush ML (2011) Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2:403–430

    Article  Google Scholar 

  • bt Ibrahim SF, Azam NANM, Amin KAM (2019) Sodium alginate film: the effect of crosslinker on physical and mechanical properties. IOP Conference Series: Materials Science and Engineering 509(1):012063

    Article  CAS  Google Scholar 

  • Cattelan G et al (2020) Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Front Bioeng Biotechnol 8:414

    Article  Google Scholar 

  • Chandika P et al (2015) Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int J Biol Macromol 81:504–513

    Article  CAS  Google Scholar 

  • Chen F et al (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32(2):310–320

    Article  Google Scholar 

  • Cohen S et al (1997) A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release 44(2–3):201–208

    Article  CAS  Google Scholar 

  • Datta S et al (2018) Alginate-honey bioinks with improved cell responses for applications as bioprinted tissue engineered constructs. J Mater Res 33(14):2029–2039

    Article  CAS  Google Scholar 

  • Dzobo K et al (2018) Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int 2018:2495848

    Article  Google Scholar 

  • Erol M et al (2012) Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomater 8(2):792–801

    Article  CAS  Google Scholar 

  • Farokhi M et al (2020) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater Polym Biomater 69(4):230–247

    Article  CAS  Google Scholar 

  • Ghanbari M et al (2021) The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering. J Mol Liq 335:116531

    Article  CAS  Google Scholar 

  • Giovagnoli S, Tsai T, DeLuca PP (2010) Formulation and release behavior of doxycycline–alginate hydrogel microparticles embedded into Pluronic F127 thermogels as a potential new vehicle for doxycycline intradermal sustained delivery. AAPS PharmSciTech 11(1):212–220

    Article  CAS  Google Scholar 

  • Giri T et al (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv 9(6):539–555

    Article  CAS  Google Scholar 

  • Gong R et al (2011) A novel pH-sensitive hydrogel based on dual crosslinked alginate/N-α-glutaric acid chitosan for oral delivery of protein. Carbohydr Polym 85(4):869–874

    Article  CAS  Google Scholar 

  • Han Y et al (2017) Injectable bioactive akermanite/alginate composite hydrogels for in situ skin tissue engineering. J Mater Chem B 5(18):3315–3326

    Article  CAS  Google Scholar 

  • Hasnain MS et al (2020) Alginates: sources, structure, and properties. In: Nayak AK, Hasnain MS (eds) Alginates in drug delivery. Elsevier, London, pp 1–17

    Google Scholar 

  • Huq T et al (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763

    Article  CAS  Google Scholar 

  • Jeoh T et al (2021) How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying. PLoS One 16(2):e0247171

    Article  CAS  Google Scholar 

  • Jeon O et al (2011) Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release 154(3):258–266

    Article  CAS  Google Scholar 

  • Karri VVSR et al (2016) Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 93:1519–1529

    Article  CAS  Google Scholar 

  • Katsen-Globa A et al (2014) Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate–gelatin cryogel scaffolds. J Mater Sci Mater Med 25(3):857–871

    Article  CAS  Google Scholar 

  • Kim G et al (2011) Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 21(17):6165–6172

    Article  CAS  Google Scholar 

  • Kim H-L et al (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54:20–25

    Article  Google Scholar 

  • Kong HJ, Mooney DJ (2003) The effects of poly (ethyleneimine)(PEI) molecular weight on reinforcement of alginate hydrogels. Cell Transplant 12(7):779–785

    Article  Google Scholar 

  • Kong HJ et al (2004) Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5(5):1720–1727

    Article  CAS  Google Scholar 

  • Kreller T et al (2021) Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering. Mater Des 208:109877

    Article  CAS  Google Scholar 

  • Kulkarni RV, Setty CM, Sa B (2010b) Polyacrylamide-g-alginate-based electrically responsive hydrogel for drug delivery application: synthesis, characterization, and formulation development. J Appl Polym Sci 115(2):1180–1188

    Article  CAS  Google Scholar 

  • Kulkarni RV et al (2010a) Interpenetrating network hydrogel membranes of sodium alginate and poly (vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int J Biol Macromol 47(4):520–527

    Article  CAS  Google Scholar 

  • Kuo CK, Ma PX (2008) Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. J Biomed Mater Res A 84(4):899–907

    Article  Google Scholar 

  • Łabowska MB, Michalak I, Detyna J (2019) Methods of extraction, physicochemical properties of alginates and their applications in biomedical field—a review. Open Chem 17(1):738–762

    Article  Google Scholar 

  • Lee J et al (2020) Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym 250:116914

    Article  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  • Li X et al (2010) Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym 79(3):660–664

    Article  CAS  Google Scholar 

  • Liao J et al (2017) Injectable alginate hydrogel cross-linked by calcium gluconate-loaded porous microspheres for cartilage tissue engineering. ACS Omega 2(2):443–454

    Article  CAS  Google Scholar 

  • Lin C-W et al (2021) An environmental friendly tapioca starch-alginate cultured scaffold as biomimetic muscle tissue. Polymers 13(17):2882

    Article  CAS  Google Scholar 

  • Liu J et al (2020) Alginate-poloxamer/silk fibroin hydrogels with covalently and physically cross-linked networks for cartilage tissue engineering. Carbohydr Polym 247:116593

    Article  CAS  Google Scholar 

  • Liu K et al (2006) Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22(22):9453–9457

    Article  Google Scholar 

  • Liu W, Griffith M, Li F (2008) Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med 19(11):3365–3371

    Article  CAS  Google Scholar 

  • Luo Y et al (2015) Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Interfaces 7(12):6541–6549

    Article  CAS  Google Scholar 

  • Mckee AC, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66

    Article  Google Scholar 

  • Mousavi A et al (2021) Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 180:692–708

    Article  CAS  Google Scholar 

  • Naghshineh N, Tahvildari K, Nozari M (2019) Preparation of chitosan, sodium alginate, gelatin and collagen biodegradable sponge composites and their application in wound healing and curcumin delivery. J Polym Environ 27(12):2819–2830

    Article  CAS  Google Scholar 

  • Núñez C et al (2022) Genetic regulation of alginate production in azotobacter vinelandii a bacterium of biotechnological interest: a mini-review. Front Microbiol 13:845473–845473

    Article  Google Scholar 

  • Orive G et al (2006) Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy. Biomaterials 27(20):3691–3700

    Article  CAS  Google Scholar 

  • Owens DJ et al (2019) Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 19(1):71–85

    Article  Google Scholar 

  • Pasqua M et al (2020) HepaRG self-assembled spheroids in alginate beads meet the clinical needs for bioartificial liver. Tissue Eng A 26(11–12):613–622

    Article  CAS  Google Scholar 

  • Pawar SN, Edgar KJ (2011) Chemical modification of alginates in organic solvent systems. Biomacromolecules 12(11):4095–4103

    Article  CAS  Google Scholar 

  • Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33(11):3279–3305

    Article  CAS  Google Scholar 

  • Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12(11):3952–3961

    Article  CAS  Google Scholar 

  • Purohit SD et al (2019) Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol 133:592–602

    Article  CAS  Google Scholar 

  • Putri AP et al (2021) Alginate modification and lectin-conjugation approach to synthesize the mucoadhesive matrix. Appl Sci 11(24):11818

    Article  CAS  Google Scholar 

  • Rajalekshmi R et al (2021) Scaffold for liver tissue engineering: exploring the potential of fibrin incorporated alginate dialdehyde–gelatin hydrogel. Int J Biol Macromol 166:999–1008

    Article  CAS  Google Scholar 

  • Reakasame S, Boccaccini AR (2018) Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules 19(1):3–21

    Article  CAS  Google Scholar 

  • Rosiak P et al (2021) Modification of alginates to modulate their physic-chemical properties and obtain biomaterials with different functional properties. Molecules 26(23):7264

    Article  CAS  Google Scholar 

  • Rottensteiner U et al (2014) In vitro and in vivo biocompatibility of alginate dialdehyde/gelatin hydrogels with and without nanoscaled bioactive glass for bone tissue engineering applications. Materials 7(3):1957–1974

    Article  CAS  Google Scholar 

  • Sachan NK et al (2009) Sodium alginate: the wonder polymer for controlled drug delivery. J Pharm Res 2(8):1191–1199

    Google Scholar 

  • Sahoo DR, Biswal T (2021) Alginate and its application to tissue engineering. SN Appl Sci 3(1):1–19

    Article  Google Scholar 

  • Salehi M et al (2019) Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. J Cell Physiol 234(9):15357–15368

    Article  CAS  Google Scholar 

  • Sarker B et al (2014) Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One 9(9):e107952

    Article  Google Scholar 

  • Schleeh T, Madau M, Roessner D (2014) Synthesis enhancements for generating highly soluble tetrabutylammonium alginates in organic solvents. Carbohydr Polym 114:493–499

    Article  CAS  Google Scholar 

  • Sepantafar M et al (2016) Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 34(4):362–379

    Article  CAS  Google Scholar 

  • Seyedmahmoud R et al (2019) Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines 10(10):679

    Article  Google Scholar 

  • Shi L et al (2018) Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. Polym Eng Sci 58(10):1782–1790

    Article  CAS  Google Scholar 

  • Sowjanya J et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B: Biointerfaces 109:294–300

    Article  CAS  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  Google Scholar 

  • Sun X, Nunes SS (2015) Overview of hydrogel-based strategies for application in cardiac tissue regeneration. Biomed Mater 10(3):034005

    Article  Google Scholar 

  • Szekalska M et al (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:7697031

    Article  Google Scholar 

  • Tam S et al (2011) Biocompatibility and physicochemical characteristics of alginate–polycation microcapsules. Acta Biomater 7(4):1683–1692

    Article  CAS  Google Scholar 

  • Tamimi M, Rajabi S, Pezeshki-Modaress M (2020) Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. Int J Biol Macromol 164:389–402

    Article  CAS  Google Scholar 

  • Thankam FG, Muthu J (2015) Alginate–polyester comacromer based hydrogels as physiochemically and biologically favorable entities for cardiac tissue engineering. J Colloid Interface Sci 457:52–61

    Article  CAS  Google Scholar 

  • Tong XF et al (2018) Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A 106(12):3292–3302

    Article  CAS  Google Scholar 

  • Treenate P, Monvisade P (2017) In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int J Biol Macromol 99:71–78

    Article  CAS  Google Scholar 

  • Venkatesan J, Bhatnagar I, Kim S-K (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12(1):300–316

    Article  CAS  Google Scholar 

  • Wang Y et al (2016) A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Sci Rep 6(1):1–13

    Article  Google Scholar 

  • Yan S et al (2014) Injectable in situ self-cross-linking hydrogels based on poly (L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 15(12):4495–4508

    Article  CAS  Google Scholar 

  • Yang J et al (2001) Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering. Biotechnol Lett 23(17):1385–1389

    Article  CAS  Google Scholar 

  • Yang X et al (2018) Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C 83:195–201

    Article  CAS  Google Scholar 

  • Yue W et al (2021) Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr Polym 251:117104

    Article  CAS  Google Scholar 

  • Yuvarani I et al (2012) Preparation and characterization of curcumin coated chitosan-alginate blend for wound dressing application. J Biomater Tissue Eng 2(1):54–60

    Article  CAS  Google Scholar 

  • Zeng H-Y, Huang Y-C (2018) Basic fibroblast growth factor released from fucoidan-modified chitosan/alginate scaffolds for promoting fibroblasts migration. J Polym Res 25(3):1–9

    Article  CAS  Google Scholar 

  • Zhu T et al (2019) Regulating preparation of functional alginate-chitosan three-dimensional scaffold for skin tissue engineering. Int J Nanomedicine 14:8891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by DST-SERB funding agency through three sanctioned projects EEQ/2020/000496, EEQ/2016/000712, and ECR/2016/002018. K.S. also acknowledges UGC for UGC-BSR Research Start-Up Grant (F.30-363/2017(BSR), Dt- 08/08/2017) and CU for UPE-II Nanofabrication project fund (UGC/166/UPE-II, Dt- 03/04/2017) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Sarkar .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, D., Neog, T.T., Patra, R., Nath, K., Sarkar, K. (2023). Alginate Based Scaffolds in Tissue Engineering and Regenerative Medicine. In: Jana, S., Jana, S. (eds) Alginate Biomaterial. Springer, Singapore. https://doi.org/10.1007/978-981-19-6937-9_15

Download citation

Publish with us

Policies and ethics

Navigation