Reconfigurable Metasurfaces for Dynamic Polarization Control

  • Chapter
  • First Online:
Metasurfaces: Towards Tunable and Reconfigurable Meta-devices

Part of the book series: Microfluidics and Nanophotonics: Science and Engineering ((MNSE,volume 1))

  • 518 Accesses

Abstract

Polarization is a property of electromagnetic waves that specifies the orientations of the electrical and magnetic fields, respecting the propagation directions. Many devices, e.g., waveplates, have been proposed to convert the electromagnetic waves’ polarization states into desired ones for vast applications, including beamforming, optical tweezers, optical isolation, telecommunications, etc. Metasurfaces are arrays of subwavelength meta-molecules designed to control the incident electromagnetic waves’ phase, amplitude, and polarization states. Microfluidic metasurfaces have more flexibility in the phase profile controls, which are enabled by the symmetry tuning of the meta-molecules. The pixel-by-pixel tuning of the meta-molecules can be applied to the metasurfaces with reconfigurable output wavefronts, allowing meta-devices with switchable functionalities. More importantly, rationally designed meta-molecules composed of liquid-state materials can selectively control incidences with different polarization states. This chapter discusses microfluidic metasurfaces for arbitrary and independent control of incident electromagnetic waves with orthogonal polarization states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veen BDV, Buckley KM (1988) Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag 5(2):4–24. https://doi.org/10.1109/53.665

    Article  Google Scholar 

  2. Chen JC, Kung Y, Hudson RE (2002) Source localization and beamforming. IEEE Signal Process Mag 19(2):30–39. https://doi.org/10.1109/79.985676

    Article  Google Scholar 

  3. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77(1):205–228. https://doi.org/10.1146/annurev.biochem.77.043007.090225

    Article  Google Scholar 

  4. Guo H, Li Z (2013) Optical tweezers technique and its applications. Sci China Physics, Mech Astron 56(12):2351–2360. https://doi.org/10.1007/s11433-013-5355-3

    Article  Google Scholar 

  5. Yu Z, Fan S (2009) Complete optical isolation created by indirect interband photonic transitions. Nat Photonics 3(2):91–94. https://doi.org/10.1038/nphoton.2008.273

    Article  Google Scholar 

  6. Bi L, Hu J, Jiang P, Kim DH, Dionne GF, Kimerling LC, Ross CA (2011) On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat Photonics 5(12):758–762. https://doi.org/10.1038/nphoton.2011.270

    Article  Google Scholar 

  7. Fatome J, Pitois S, Morin P, Millot G (2010) Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications. Opt Express 18(15):15311–15317. https://doi.org/10.1364/OE.18.015311

    Article  Google Scholar 

  8. Li X, Voss PL, Chen J, Shar** JE, Kumar P (2005) Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber. Opt Lett 30(10):1201–1203. https://doi.org/10.1364/OL.30.001201

    Article  Google Scholar 

  9. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13(2):139–150. https://doi.org/10.1038/nmat3839

    Article  Google Scholar 

  10. Kildishev Alexander V, Boltasseva A, Shalaev Vladimir M (2013) Planar photonics with metasurfaces. Science 339(6125):1232009. https://doi.org/10.1126/science.1232009

    Article  Google Scholar 

  11. Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski CR (2016) Metasurfaces: from microwaves to visible. Phys Rep 634:1–72. https://doi.org/10.1016/j.physrep.2016.04.004

    Article  MathSciNet  Google Scholar 

  12. Liu T, Meng Y, Ma H, Wang J, Wang X, Zhu R, Qu S (2022) Generating diverse functionalities simultaneously and independently for arbitrary linear polarized illumination enabled by a chiral transmission-reflection-selective bifunctional metasurface. Opt Express 30(5):7124–7136. https://doi.org/10.1364/OE.452395

    Article  Google Scholar 

  13. Wu X, Feng Y, Zhang C, Liu HL (2022) Three-dimensional chiral metasurfaces for circular-polarized anomalous beam steering. Opt Lett 47(7):1794–1797. https://doi.org/10.1364/OL.450390

    Article  Google Scholar 

  14. Wang H, Li Y, Han Y, Sui S, Wang J, Qu S (2019) A circular-polarized metasurface planar reflector antenna based on Pancharatnam-Berry phase. Appl Phys A 125(4):274. https://doi.org/10.1007/s00339-019-2575-z

    Article  Google Scholar 

  15. Andrews MR, Mitra PP, Carvalho R (2001) Tripling the capacity of wireless communications using electromagnetic polarization. Nature 409(6818):316–318. https://doi.org/10.1038/35053015

    Article  Google Scholar 

  16. Colomb T, Dahlgren P, Beghuin D, Cuche E, Marquet P, Depeursinge C (2002) Polarization imaging by use of digital holography. Appl Opt 41(1):27–37. https://doi.org/10.1364/AO.41.000027

    Article  Google Scholar 

  17. O’Brien Jeremy L (2007) Optical quantum computing. Science 318(5856):1567–1570. https://doi.org/10.1126/science.1142892

    Article  Google Scholar 

  18. Shi Z, Zhu Alexander Y, Li Z, Huang Y-W, Chen Wei T, Qiu C-W, Capasso F. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Sci Adv 6(23):eaba3367. https://doi.org/10.1126/sciadv.aba3367

  19. Khorasaninejad M, Zhu W, Crozier KB (2015) Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2(4):376–382. https://doi.org/10.1364/OPTICA.2.000376

    Article  Google Scholar 

  20. Ni X, Kildishev AV, Shalaev VM (2013) Metasurface holograms for visible light. Nat Commun 4(1):2807. https://doi.org/10.1038/ncomms3807

    Article  Google Scholar 

  21. Wan W, Gao J, Yang X (2017) Metasurface holograms for holographic imaging. Adv Opt Mater 5(21):1700541. https://doi.org/10.1002/adom.201700541

    Article  Google Scholar 

  22. Gorkunov MV, Antonov AA, Kivshar YS (2020) Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys Rev Lett 125(9):093903. https://doi.org/10.1103/PhysRevLett.125.093903

    Article  Google Scholar 

  23. Wang Z, Cheng F, Winsor T, Liu Y (2016) Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27(41):412001. https://doi.org/10.1088/0957-4484/27/41/412001

    Article  Google Scholar 

  24. **ao S, Wang J, Liu F, Zhang S, Yin X, Li J (2017) Spin-dependent optics with metasurfaces. Nanophotonics 6(1):215–234. https://doi.org/10.1515/nanoph-2016-0121

    Article  Google Scholar 

  25. Lee B, Lehmann K, Taylor J, Yalin A (2014) A high-finesse broadband optical cavity using calcium fluoride prism retroreflectors. Opt Express 22(10):11583–11591. https://doi.org/10.1364/OE.22.011583

    Article  Google Scholar 

  26. Parker DH (2005) Multidirectional retroreflector assembly with a common virtual reflection point using four-mirror retroreflectors. Precis Eng 29(3):361–366. https://doi.org/10.1016/j.precisioneng.2004.10.001

    Article  Google Scholar 

  27. Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A (2017) Planar metasurface retroreflector. Nat Photonics 11(7):415–420. https://doi.org/10.1038/nphoton.2017.96

    Article  Google Scholar 

  28. Wong AMH, Christian P, Eleftheriades GV (2017, 4–7 Jan) Binary Huygens’ metasurface: a simple and efficient retroreflector at near-grazing angles. Paper presented at the 2017 United States national committee of URSI national radio science meeting (USNC-URSI NRSM)

    Google Scholar 

  29. Yan L, Zhu W, Karim MF, Cai H, Gu AY, Shen Z, Liu AQ (2018) 0.2 λ0 Thick adaptive retroreflector made of spin-locked metasurface. Adv Mater 30(39):1802721. https://doi.org/10.1002/adma.201802721

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, W., Liu, AQ. (2023). Reconfigurable Metasurfaces for Dynamic Polarization Control. In: Metasurfaces: Towards Tunable and Reconfigurable Meta-devices. Microfluidics and Nanophotonics: Science and Engineering, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-19-6925-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6925-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6924-9

  • Online ISBN: 978-981-19-6925-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation