Electron Beam Irradiation Effects and In-Situ Irradiation of Nanomaterials

  • Chapter
  • First Online:
In-Situ Transmission Electron Microscopy

Abstract

Electron beam irradiation of specimens is often referred to as damage but is inevitable in electron microscopy as the energetic electron beam interacts with the specimen while passing through the specimen. The damage may accumulate over time and lead to visible changes in the structure or chemistry of the specimen. Therefore, electron irradiation effects should be carefully evaluated in in situ experiments in the electron microscope. Although radiation damage is normally an unwelcome artifact, under certain conditions electron irradiation can provide a tool to trigger the local structural evolution or chemical reactivity in a controllable way. The structural transformation can thus be monitored in real time with atomic resolution. Consequently, in situ irradiation experiments are beneficial to reveal the physics behind irradiation effects, explore nonequilibrium states of nanosystems and extend the technical applicability of electron irradiation. In this chapter, we summarize the physical principles of electron irradiation effects including atom displacements, surface sputtering, electrostatic charging, radiolysis, electron beam heating, and deposition. We also present some examples of electron irradiation-induced processes at the atomic scale, such as defect dynamics, phase transformations, bottom-up growth, top-down fabrication, and mechanical deformation. Particular emphasis is put on electron beam-induced processes inside the TEM where electron beam irradiation plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu T, Sun L (2015) Dynamic In-Situ experimentation on nanomaterials at the atomic scale. Small 11(27):3247–3262. https://doi.org/10.1002/smll.201403236

    Article  CAS  Google Scholar 

  2. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409. https://doi.org/10.1016/j.micron.2004.02.003

    Article  CAS  Google Scholar 

  3. Lembke A, Ruska H (1940) Vergleichende Mikroskopische und Übermikroskopische Beobachtungen un den Erregern der Tuberkulose. J Mol Med 19(10):217–220

    Google Scholar 

  4. Sheng H, Zheng H, Cao F, Wu S, Li L, Liu C, Zhao D, Wang J (2015) Anelasticity of twinned CuO nanowires. Nano Res 8(11):3687–3693. https://doi.org/10.1007/s12274-015-0868-x

    Article  CAS  Google Scholar 

  5. Zheng H, Liu Y, Mao SX, Wang J, Huang JY (2012) Beam-assisted large elongation of in situ formed Li2O nanowires. Sci Rep 2(1):542. https://doi.org/10.1038/srep00542

    Article  CAS  Google Scholar 

  6. Sun J, He L, Lo Y-C, Xu T, Bi H, Sun L, Zhang Z, Mao SX, Li J (2014) Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater 13(11):1007–1012. https://doi.org/10.1038/nmat4105

    Article  CAS  Google Scholar 

  7. Silk ECH, Barnes RS (1959) Examination of fission fragment tracks with an electron microscope. Phil Mag 4(44):970–972. https://doi.org/10.1080/14786435908238273

    Article  CAS  Google Scholar 

  8. Cowley J (1966) Irradiation effects in beryllia and zinc oxide. Acta Crystallogr A 21(2):192–196. https://doi.org/10.1107/S0365110X66002603

    Article  CAS  Google Scholar 

  9. Makin M (1968) Electron displacement damage in copper and aluminium in a high voltage electron microscope. Phil Mag 18(153):637–653. https://doi.org/10.1080/14786436808227466

    Article  CAS  Google Scholar 

  10. Bursill L, Thomas J, Rao K-J (1981) Stability of zeolites under electron irradiation and imaging of heavy cations in silicates. Nature 289(5794):157–158. https://doi.org/10.1038/289157a0

    Article  CAS  Google Scholar 

  11. Sun L, Banhart F, Warner J (2015) Two-dimensional materials under electron irradiation. MRS Bull 40(01):29–37. https://doi.org/10.1557/mrs.2014.303

    Article  CAS  Google Scholar 

  12. Xu T, Yin K, Sun L (2017) In-situ study of electron irradiation on two-dimensional layered materials. Chin Sci Bull 62(25):2919–2930. https://doi.org/10.1360/N972016-01031

    Article  Google Scholar 

  13. Xu T, Shen Y, Yin K, Sun L (2019) Precisely monitoring and tailoring 2D nanostructures at the atomic scale. APL Mater 7(5):050901. https://doi.org/10.1063/1.5096584

    Article  CAS  Google Scholar 

  14. Stenn K, Bahr GF (1970) Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J Ultrastruct Res 31(5):526–550. https://doi.org/10.1016/S0022-5320(70)90167-X

    Article  CAS  Google Scholar 

  15. Thomas L, Humphreys C, Duff W, Grubb D (1970) Radiation damage of polymers in the million volt electron microscope. Radiat Eff 3(1):89–91. https://doi.org/10.1080/00337577008235620

    Article  CAS  Google Scholar 

  16. Hobbs LW (1987) Electron-beam sensitivity in inorganic specimens. Ultramicroscopy 23(3):339–344. https://doi.org/10.1016/0304-3991(87)90244-0

    Article  CAS  Google Scholar 

  17. Urban K (1979) Radiation-induced processes in experiments carried out in-situ in the high-voltage electron microscope. Phys Status Solidi A 56(1):157–168. https://doi.org/10.1002/pssa.2210560116

    Article  CAS  Google Scholar 

  18. Burton E, Sennett R, Ellis S (1947) Specimen changes due to electron bombardment in the electron microscope. Nature 160(4069):565–567. https://doi.org/10.1038/160565b0

    Article  CAS  Google Scholar 

  19. Hamm FA, Norman EV (1948) Transformations in Organic Pigments. J Appl Phys 19(12):1097–1109. https://doi.org/10.1063/1.1715026

    Article  CAS  Google Scholar 

  20. Fischer RB (1954) Decompositions of Inorganic Specimens During Observation in the Electron Microscope. J Appl Phys 25(7):894–896. https://doi.org/10.1063/1.1721764

    Article  CAS  Google Scholar 

  21. Hillier J, Mudd S, Smith AG, Beutner EH (1950) The “Fixation” of electron microscopic specimens by the electron beam. J Bacteriol 60(5):641–654

    Article  CAS  Google Scholar 

  22. Wilkes P (1979) Phase stability under irradiation—a review of theory and experiment. J Nucl Mater 83(1):166–175. https://doi.org/10.1016/0022-3115(79)90602-0

    Article  CAS  Google Scholar 

  23. Saka H, Noda K, Matsumoto K, Imura T (1975) Effect of electron irradiation on dislocation behavior in Ni during in-situ deformation experiment in HVEM. Scr Metall 9(5):499–504. https://doi.org/10.1016/0036-9748(75)90340-3

    Article  CAS  Google Scholar 

  24. Cherns D, Hutchison JL, Jenkins ML, Hirsch PB, White S (1980) Electron irradiation induced vitrification at dislocations in quartz. Nature 287(5780):314–316. https://doi.org/10.1038/287314a0

    Article  CAS  Google Scholar 

  25. Fisher SB, Williams KR (1972) Irradiation enhanced precipitation in stainless steel. Phil Mag 25(2):371–380. https://doi.org/10.1080/14786437208226811

    Article  CAS  Google Scholar 

  26. Yagi K, Honjo G (1964) Transmission electron microscopy of sodium chloride films prepared by electron beam flashing thinning technique. J Phys Soc Jpn 19(10):1892–1905. https://doi.org/10.1143/jpsj.19.1892

    Article  CAS  Google Scholar 

  27. Matsui S, Ichihashi T (1988) In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy. Appl Phys Lett 53(10):842–844. https://doi.org/10.1063/1.100089

    Article  CAS  Google Scholar 

  28. Golberg D, Bando Y, Stéphan O, Kurashima K (1998) Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl Phys Lett 73(17):2441–2443. https://doi.org/10.1063/1.122475

    Article  CAS  Google Scholar 

  29. Furuya K (2008) Nanofabrication by advanced electron microscopy using intense and focused beam. Sci Technol Adv Mater 9(1):014110. https://doi.org/10.1088/1468-6996/9/1/014110

    Article  Google Scholar 

  30. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107(7):071301. https://doi.org/10.1063/1.3318261

    Article  CAS  Google Scholar 

  31. Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382(6590):433–435. https://doi.org/10.1038/382433a0

    Article  CAS  Google Scholar 

  32. Tripathi M, Mittelberger A, Pike NA, Mangler C, Meyer JC, Verstraete MJ, Kotakoski J, Susi T (2018) Electron-Beam manipulation of silicon dopants in graphene. Nano Lett 18(8):5319–5323. https://doi.org/10.1021/acs.nanolett.8b02406

    Article  CAS  Google Scholar 

  33. Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH (2014) Electron–water interactions and implications for liquid cell electron microscopy. The Journal of Physical Chemistry C 118(38):22373–22382. https://doi.org/10.1021/jp507400n

    Article  CAS  Google Scholar 

  34. Williams DB, Carter CB (2009) Transmission Electron Microscopy, 2nd edn. Springer, New York

    Book  Google Scholar 

  35. Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62(8):1181–1221. https://doi.org/10.1088/0034-4885/62/8/201

    Article  CAS  Google Scholar 

  36. McKinley WA, Feshbach H (1948) The Coulomb scattering of relativistic electrons by nuclei. Phys Rev 74(12):1759. https://doi.org/10.1103/PhysRev.74.1759

    Article  CAS  Google Scholar 

  37. Meyer JC, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park HJ, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov AV, Kaiser U (2012) Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys Rev Lett 108(19):196102. https://doi.org/10.1103/PhysRevLett.108.196102

    Article  CAS  Google Scholar 

  38. Egerton RF, McLeod R, Wang F, Malac M (2010) Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8):991–997. https://doi.org/10.1016/j.ultramic.2009.11.003

    Article  CAS  Google Scholar 

  39. Egerton RF (2013) Beam-Induced motion of adatoms in the transmission electron microscope. Microsc Microanal 19(02):479–486. https://doi.org/10.1017/S1431927612014274

    Article  CAS  Google Scholar 

  40. Cazaux J (1995) Correlations between ionization radiation damage and charging effects in transmission electron microscopy. Ultramicroscopy 60(3):411–425. https://doi.org/10.1016/0304-3991(95)00077-1

    Article  CAS  Google Scholar 

  41. Hobbs LW (1990) Murphy’s law and the uncertainty of electron probes. Scanning Microsc Suppl 4:171–183

    CAS  Google Scholar 

  42. McCartney MR, Crozier PA, Weiss JK, Smith DJ (1991) Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum 42(4):301–308. https://doi.org/10.1016/0042-207X(91)90042-H

    Article  CAS  Google Scholar 

  43. Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16(2):139–150. https://doi.org/10.1016/0304-3991(85)90069-5

    Article  CAS  Google Scholar 

  44. Isaacson M, Johnson D, Crewe A (1973) Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55(2):205–224. https://doi.org/10.2307/3573678

    Article  CAS  Google Scholar 

  45. Woehl T, Abellan P (2017) Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J Microsc 265(2):135–147. https://doi.org/10.1111/jmi.12508

    Article  CAS  Google Scholar 

  46. Fisher S (1970) On the temperature rise in electron irradiated foils. Radiat Eff 5(2):239–243. https://doi.org/10.1080/00337577008235027

    Article  CAS  Google Scholar 

  47. van Dorp WF, Hagen CW (2008) A critical literature review of focused electron beam induced deposition. J Appl Phys 104(8):081301. https://doi.org/10.1063/1.2977587

    Article  CAS  Google Scholar 

  48. Xu T, **e X, Yin K, Sun J, He L, Sun L (2014) Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small 10(9):1724–1728. https://doi.org/10.1002/smll.201303377

    Article  CAS  Google Scholar 

  49. Meyer JC, Girit CO, Crommie MF, Zettl A (2008) Hydrocarbon lithography on graphene membranes. Appl Phys Lett 92(12):123110–123113. https://doi.org/10.1063/1.2901147

    Article  CAS  Google Scholar 

  50. He L, Xu T, Sun J, Yin K, **e X, Ding L, **u H, Sun L (2012) Investment casting of carbon tubular structures. Carbon 50(8):2845–2852. https://doi.org/10.1016/j.carbon.2012.02.051

    Article  CAS  Google Scholar 

  51. He L-B, Zhang L, Tan X-D, Tang L-P, Xu T, Zhou Y-L, Ren Z-Y, Wang Y, Teng C-Y, Sun L-T, Nie J-F (2017) Surface energy and surface stability of ag nanocrystals at elevated temperatures and their dominance in sublimation-induced shape evolution. Small 13(27):1700743. https://doi.org/10.1002/smll.201700743

    Article  CAS  Google Scholar 

  52. Pashley DW, Stowell MJ, Jacobs MH, Law TJ (1964) The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope. Phil Mag 10(103):127–158. https://doi.org/10.1080/14786436408224212

    Article  CAS  Google Scholar 

  53. Komsa H-P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and do**. Phys Rev Lett 109(3):035503. https://doi.org/10.1103/PhysRevLett.109.035503

    Article  CAS  Google Scholar 

  54. Russo CJ, Golovchenko JA (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proc Natl Acad Sci USA 109(16):5953–5957. https://doi.org/10.1073/pnas.1119827109

    Article  Google Scholar 

  55. Pham T, Gibb AL, Li Z, Gilbert SM, Song C, Louie SG, Zettl A (2016) Formation and dynamics of electron-irradiation-induced defects in hexagonal boron nitride at elevated temperatures. Nano Lett 16(11):7142–7147. https://doi.org/10.1021/acs.nanolett.6b03442

    Article  CAS  Google Scholar 

  56. Lehtinen O, Kurasch S, Krasheninnikov AV, Kaiser U (2013) Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat Commun 4:2098. https://doi.org/10.1038/ncomms3098

    Article  CAS  Google Scholar 

  57. Komsa H-P, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2013) From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys Rev B 88(3):035301. https://doi.org/10.1103/PhysRevB.88.035301

    Article  CAS  Google Scholar 

  58. Cretu O, Lin Y-C, Suenaga K (2014) Evidence for active atomic defects in monolayer hexagonal boron nitride–a new mechanism of plasticity in 2D materials. Nano Lett 14(2):1064–1068. https://doi.org/10.1021/nl404735w

    Article  CAS  Google Scholar 

  59. Robertson AW, Montanari B, He K, Kim J, Allen CS, Wu YA, Olivier J, Neethling J, Harrison N, Kirkland AI, Warner JH (2013) Dynamics of single fe atoms in graphene vacancies. Nano Lett 13(4):1468–1475. https://doi.org/10.1021/nl304495v

    Article  CAS  Google Scholar 

  60. Lin Y-C, Teng P-Y, Yeh C-H, Koshino M, Chiu P-W, Suenaga K (2015) Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett 15(11):7408–7413. https://doi.org/10.1021/acs.nanolett.5b02831

    Article  CAS  Google Scholar 

  61. Susi T, Kotakoski J, Kepaptsoglou D, Mangler C, Lovejoy TC, Krivanek OL, Zan R, Bangert U, Ayala P, Meyer JC, Ramasse Q (2014) Silicon-Carbon bond inversions driven by 60-keV electrons in graphene. Phys Rev Lett 113(11):115501. https://doi.org/10.1103/PhysRevLett.113.115501

    Article  CAS  Google Scholar 

  62. Yang Z, Yin L, Lee J, Ren W, Cheng H-M, Ye H, Pantelides ST, Pennycook SJ, Chisholm MF (2014) Direct observation of atomic dynamics and silicon do** at a topological defect in graphene. Angew Chem Int Ed 53(34):8908–8912. https://doi.org/10.1002/anie.201403382

    Article  CAS  Google Scholar 

  63. Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8(11):3582–3586. https://doi.org/10.1021/nl801386m

    Article  CAS  Google Scholar 

  64. Li L, Reich S, Robertson J (2005) Defect energies of graphite: Density-functional calculations. Phys Rev B 72(18):184109. https://doi.org/10.1103/PhysRevB.72.184109

    Article  CAS  Google Scholar 

  65. Kurasch S, Kotakoski J, Lehtinen O, Skákalová V, Smet J, Krill CE, Krasheninnikov AV, Kaiser U (2012) Atom-by-Atom observation of grain boundary migration in graphene. Nano Lett 12(6):3168–3173. https://doi.org/10.1021/nl301141g

    Article  CAS  Google Scholar 

  66. Lin Y-C, Björkman T, Komsa H-P, Teng P-Y, Yeh C-H, Huang F-S, Lin K-H, Jadczak J, Huang Y-S, Chiu P-W (2015) Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat Commun 6:6736. https://doi.org/10.1038/ncomms7736

    Article  CAS  Google Scholar 

  67. Kotakoski J, Krasheninnikov A, Kaiser U, Meyer J (2011) From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106(10):105505. https://doi.org/10.1103/PhysRevLett.106.105505

    Article  CAS  Google Scholar 

  68. Chen Q, Robertson AW, He K, Gong C, Yoon E, Lee G-D, Warner JH (2015) Atomic level distributed strain within graphene divacancies from bond rotations. ACS Nano 9(8):8599–8608. https://doi.org/10.1021/acsnano.5b03801

    Article  CAS  Google Scholar 

  69. Robertson AW, Lee G-D, He K, Yoon E, Kirkland AI, Warner JH (2014) Stability and dynamics of the tetravacancy in graphene. Nano Lett 14(3):1634–1642. https://doi.org/10.1021/nl500119p

    Article  CAS  Google Scholar 

  70. Börrnert F, Avdoshenko SM, Bachmatiuk A, Ibrahim I, Büchner B, Cuniberti G, Rümmeli MH (2012) Amorphous carbon under 80 kV electron Irradiation: a means to make or break Graphene. Adv Mater 24(41):5630–5635. https://doi.org/10.1002/adma.201202173

    Article  Google Scholar 

  71. Chuvilin A, Kaiser U, Bichoutskaia E, Besley NA, Khlobystov AN (2010) Direct transformation of graphene to fullerene. Nat Chem 2(6):450–453. https://doi.org/10.1038/nchem.644

    Article  CAS  Google Scholar 

  72. Banhart F, Füller T, Redlich P, Ajayan PM (1997) The formation, annealing and self-compression of carbon onions under electron irradiation. Chem Phys Lett 269(3):349–355. https://doi.org/10.1016/S0009-2614(97)00269-8

    Article  CAS  Google Scholar 

  73. Sun L, Rodriguez-Manzo J, Banhart F (2006) Elastic deformation of nanometer-sized metal crystals in graphitic shells. Appl Phys Lett 89(26):263104. https://doi.org/10.1063/1.2403898

    Article  CAS  Google Scholar 

  74. Hiraki J, Mori H, Taguchi E, Yasuda H, Kinoshita H, Ohmae N (2005) Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope. Appl Phys Lett 86(22):223101. https://doi.org/10.1063/1.1935047

    Article  CAS  Google Scholar 

  75. Lyutovich Y, Banhart F (1999) Low-pressure transformation of graphite to diamond under irradiation. Appl Phys Lett 74(5):659–660. https://doi.org/10.1063/1.122978

    Article  CAS  Google Scholar 

  76. Zheng H, Rivest JB, Miller TA, Sadtler B, Lindenberg A, Toney MF, Wang L-W, Kisielowski C, Alivisatos AP (2011) Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333(6039):206–209. https://doi.org/10.1126/science.1204713

    Article  CAS  Google Scholar 

  77. Lin Y-C, Dumcenco DO, Huang Y-S, Suenaga K (2014) Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol 9(5):391–396. https://doi.org/10.1038/nnano.2014.64

    Article  CAS  Google Scholar 

  78. Peng H, Meng W, Zheng H, Wei Y, Sheng H, Liu H, Li L, Wen G, Jia S, Li L, Wang J (2019) Probing the crystal and electronic structures of molybdenum oxide in redox process: implications for energy applications. ACS Appl Energy Mater 2(10):7709–7716. https://doi.org/10.1021/acsaem.9b01747

    Article  CAS  Google Scholar 

  79. Zhao P, Cao F, Jia S, Zheng H, Wang J, Zhao D (2017) Phase transition of MoO3 nanobelts under external fields. J Chin Electron Microsc Soc 36(5):429–435. https://doi.org/10.3969/j.issn.1000-6281.2017.05.002

    Article  CAS  Google Scholar 

  80. Wang Y, Wen G, Li L, Liu H, Peng H, Jiang R, Zhuang Y, Jia S, Zheng H, Wang J (2019) Electron-beam-induced Growth and Reduction of WO2.72 Single Crystal. J Chin Electron Microsc Soc 38(6):600–607. https://doi.org/10.3969/j.issn.1000-6281.2019.06.004

  81. Jia S, Li L, Zhao L, Zheng H, Zhao P, Guan X, Chen G, Wu J, Zhou S, Wang J (2018) Surface-dependent formation of Zn clusters in ZnO single crystals by electron irradiation. Physical Review Materials 2(6):060402. https://doi.org/10.1103/PhysRevMaterials.2.060402

    Article  Google Scholar 

  82. Sutter E, Huang Y, Komsa HP, Ghorbani-Asl M, Krasheninnikov AV, Sutter P (2016) Electron-Beam induced transformations of layered Tin Dichalcogenides. Nano Lett 16(7):4410–4416. https://doi.org/10.1021/acs.nanolett.6b01541

    Article  CAS  Google Scholar 

  83. Lin J, Zuluaga S, Yu P, Liu Z, Pantelides ST, Suenaga K (2017) Novel Pd2Se3 Two-Dimensional phase driven by interlayer fusion in layered PdSe2. Phys Rev Lett 119(1):016101. https://doi.org/10.1103/PhysRevLett.119.016101

    Article  Google Scholar 

  84. Zhang H, Wang W, Xu T, Xu F, Sun L (2020) Phase transformation at controlled locations in nanowires by in situ electron irradiation. Nano Res 13(7):1912–1919. https://doi.org/10.1007/s12274-020-2711-2

    Article  CAS  Google Scholar 

  85. Cao F, Zheng H, Jia S, Bai X, Li L, Sheng H, Wu S, Han W, Li M, Wen G, Yu J, Wang J (2015) Atomistic observation of phase transitions in calcium sulfates under electron irradiation. The Journal of Physical Chemistry C 119(38):22244–22248. https://doi.org/10.1021/acs.jpcc.5b07508

    Article  CAS  Google Scholar 

  86. Chen S, Zhang X, Zhao J, Zhang Y, Kong G, Li Q, Li N, Yu Y, Xu N, Zhang J, Liu K, Zhao Q, Cao J, Feng J, Li X, Qi J, Yu D, Li J, Gao P (2018) Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat Commun 9(1):4807. https://doi.org/10.1038/s41467-018-07177-y

    Article  CAS  Google Scholar 

  87. Wei X, Wang M-S, Bando Y, Golberg D (2011) Electron-Beam-Induced substitutional carbon do** of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5(4):2916–2922. https://doi.org/10.1021/nn103548r

    Article  CAS  Google Scholar 

  88. Sun L, Banhart F (2006) Graphitic onions as reaction cells on the nanoscale. Appl Phys Lett 88(19):193121. https://doi.org/10.1063/1.2202106

    Article  CAS  Google Scholar 

  89. Sheng H, Zheng H, Jia S, Chan MK, Rajh T, Wang J, Wen J (2019) Atomistic manipulation of reversible oxidation and reduction in Ag with an electron beam. Nanoscale 11(22):10756–10762. https://doi.org/10.1039/C8NR09525F

    Article  CAS  Google Scholar 

  90. Zheng H, Wu S, Sheng H, Liu C, Liu Y, Cao F, Zhou Z, Zhao X, Zhao D, Wang J (2014) Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl Phys Lett 104(14):141906. https://doi.org/10.1063/1.4870832

    Article  CAS  Google Scholar 

  91. Cao F, Zheng H, Jia S, Liu H, Li L, Chen B, Liu X, Wu S, Sheng H, **ng R (2016) Atomistic observation of structural evolution during magnesium oxide growth. J Phys Chem C 120(47):26873–26878. https://doi.org/10.1021/acs.jpcc.6b08833

    Article  CAS  Google Scholar 

  92. Meng S, Wu J, Zhao L, Zheng H, Jia S, Hu S, Meng W, Pu S, Zhao D, Wang J (2018) Atomistic insight into the redox reactions in Fe/Oxide Core-Shell nanoparticles. Chem Mater 30(20):7306–7312. https://doi.org/10.1021/acs.chemmater.8b03679

    Article  CAS  Google Scholar 

  93. Su Q, Du G, Xu B (2014) In situ growth of In2O3 nanocrystals by electron irradiation in transmission electron microscope. Mater Lett 120:208–211. https://doi.org/10.1016/j.matlet.2014.01.068

    Article  CAS  Google Scholar 

  94. Gonzalez-Martinez I, Bachmatiuk A, Bezugly V, Kunstmann J, Gemming T, Liu Z, Cuniberti G, Rümmeli M (2016) Electron-beam induced synthesis of nanostructures: a review. Nanoscale 8(22):11340–11362. https://doi.org/10.1039/C6NR01941B

    Article  CAS  Google Scholar 

  95. Du X-w, Takeguchi M, Tanaka M, Furuya K (2003) Formation of crystalline Si nanodots in SiO2 films by electron irradiation. Appl Phys Lett 82(7):1108–1110. https://doi.org/10.1063/1.1555691

    Article  CAS  Google Scholar 

  96. Yu K, Xu T, Wu X, Wang W, Zhang H, Zhang Q, Tang L, Sun L (2019) In Situ Observation of Crystalline Silicon Growth from SiO2 at Atomic Scale. Research 2019:3289247. https://doi.org/10.34133/2019/3289247

    Article  CAS  Google Scholar 

  97. Gonzalez-Martinez IG, Gorantla SM, Bachmatiuk A, Bezugly V, Zhao J, Gemming T, Kunstmann J, Jr E, Cuniberti G, Rümmeli MH (2014) Room temperature in situ growth of B/BO x nanowires and BO x nanotubes. Nano Lett 14(2):799–805. https://doi.org/10.1021/nl404147r

    Article  CAS  Google Scholar 

  98. Jia S, Hu S, Zheng H, Wei Y, Meng S, Sheng H, Liu H, Zhou S, Zhao D, Wang J (2018) Atomistic interface dynamics in Sn-Catalyzed growth of Wurtzite and Zinc-Blende ZnO nanowires. Nano Lett 18(7):4095–4099. https://doi.org/10.1021/acs.nanolett.8b00420

    Article  CAS  Google Scholar 

  99. Edmondson MJ, Zhou W, Sieber S, Jones I, Gameson I, Anderson P, Edwards P (2001) Electron-Beam induced growth of bare silver nanowires from zeolite crystallites. Adv Mater 13(21):1608–1611. https://doi.org/10.1002/1521-4095(200111)13:21%3C1608::AID-ADMA1608%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  100. Rodríguez-Manzo JA, Terrones M, Terrones H, Kroto HW, Sun L, Banhart F (2007) In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat Nanotechnol 2(5):307–311. https://doi.org/10.1038/nnano.2007.107

    Article  CAS  Google Scholar 

  101. Sang X, **e Y, Yilmaz DE, Lotfi R, Alhabeb M, Ostadhossein A, Anasori B, Sun W, Li X, **ao K, Kent PRC, van Duin ACT, Gogotsi Y, Unocic RR (2018) In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat Commun 9(1):2266. https://doi.org/10.1038/s41467-018-04610-0

    Article  CAS  Google Scholar 

  102. Zheng H, Liu Y, Cao F, Wu S, Jia S, Cao A, Zhao D, Wang J (2013) Electron beam-assisted healing of nanopores in magnesium alloys. Sci Rep 3(1):1920. https://doi.org/10.1038/srep01920

    Article  Google Scholar 

  103. Shen Y, Xu T, Tan X, He L, Yin K, Wan N, Sun L (2018) In Situ Repair of 2D chalcogenides under electron beam irradiation. Adv Mater 30(14):1705954. https://doi.org/10.1002/adma.201705954

    Article  CAS  Google Scholar 

  104. Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J, Rümmeli MH (2014) Free-Standing Single-Atom-Thick Iron membranes suspended in graphene pores. Science 343(6176):1228–1232. https://doi.org/10.1126/science.1245273

    Article  CAS  Google Scholar 

  105. Yin K, Zhang YY, Zhou Y, Sun L, Chisholm MF, Pantelides ST, Zhou W (2017) Unsupported single-atom-thick copper oxide monolayers. 2D Materials 4(1):011001. https://doi.org/10.1088/2053-1583/4/1/011001

  106. Wan N, Xu J, Xu T, Matteo M, Sun L, Sun J, Zhou Y (2013) Surface energy guided sub-10 nm hierarchy structures fabrication by direct e-beam etching. RSC Adv 3(39):17860–17865. https://doi.org/10.1039/c3ra42370k

    Article  CAS  Google Scholar 

  107. Shen Y, Xu T, Tan X, Sun J, He L, Yin K, Zhou Y, Banhart F, Sun L (2017) Electron beam etching of CaO crystals observed atom by atom. Nano Lett 17(8):5119–5125. https://doi.org/10.1021/acs.nanolett.7b02498

    Article  CAS  Google Scholar 

  108. Tang L, He L, Zhang L, Yu K, Xu T, Zhang Q, Dong H, Zhu C, Sun L (2018) A novel domain-confined growth strategy for in situ controllable fabrication of individual hollow nanostructures. Advanced Science 5(5):1700213. https://doi.org/10.1002/advs.201700213

    Article  CAS  Google Scholar 

  109. Wu S, Zheng H, Jia S, Sheng H, Cao F, Li L, Hu S, Zhao P, Zhao D, Wang J (2016) Three-dimensional structures of magnesium nanopores. Nanotechnology 27(12):125603. https://doi.org/10.1088/0957-4484/27/12/125603

    Article  CAS  Google Scholar 

  110. Wu S, Cao F, Zheng H, Sheng H, Liu C, Liu Y, Zhao D, Wang J (2013) Fabrication of faceted nanopores in magnesium. Appl Phys Lett 103(24):243101. https://doi.org/10.1063/1.4841515

    Article  CAS  Google Scholar 

  111. Xu T, Yin K, **e X, He L, Wang B, Sun L (2012) Size-dependent evolution of graphene nanopores under thermal excitation. Small 8(22):3422–3426. https://doi.org/10.1002/smll.201200979

    Article  CAS  Google Scholar 

  112. Kondo Y, Takayanagi K (1997) Gold nanobridge stabilized by surface structure. Phys Rev Lett 79(18):3455. https://doi.org/10.1103/PhysRevLett.79.3455

    Article  CAS  Google Scholar 

  113. Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289(5479):606–608. https://doi.org/10.1126/science.289.5479.606

    Article  CAS  Google Scholar 

  114. Rodrigues V, Fuhrer T, Ugarte D (2000) Signature of atomic structure in the quantum conductance of gold nanowires. Phys Rev Lett 85(19):4124. https://doi.org/10.1103/PhysRevLett.85.4124

    Article  CAS  Google Scholar 

  115. Rodrigues V, Bettini J, Rocha A, Rego LG, Ugarte D (2002) Quantum conductance in silver nanowires: Correlation between atomic structure and transport properties. Phys Rev B 65(15):153402. https://doi.org/10.1103/PhysRevB.65.153402

    Article  CAS  Google Scholar 

  116. González JC, Rodrigues V, Bettini J, Rego LGC, Rocha AR, Coura PZ, Dantas SO, Sato F, Galvão DS, Ugarte D (2004) Indication of unusual pentagonal structures in atomic-size cu nanowires. Phys Rev Lett 93(12):126103. https://doi.org/10.1103/PhysRevLett.93.126103

    Article  CAS  Google Scholar 

  117. Rodrigues V, Sato F, Galvão DS, Ugarte D (2007) Size limit of defect formation in pyramidal Pt nanocontacts. Phys Rev Lett 99(25):255501. https://doi.org/10.1103/PhysRevLett.99.255501

    Article  CAS  Google Scholar 

  118. ** C, Lan H, Peng L, Suenaga K, Iijima S (2009) Deriving carbon atomic chains from graphene. Phys Rev Lett 102(20):205501. https://doi.org/10.1103/PhysRevLett.102.205501

    Article  CAS  Google Scholar 

  119. La Torre A, Botello-Mendez A, Baaziz W, Charlier JC, Banhart F (2015) Strain-induced metal–semiconductor transition observed in atomic carbon chains. Nat Commun 6:6636. https://doi.org/10.1038/ncomms7636

    Article  CAS  Google Scholar 

  120. Lin Y-C, Morishita S, Koshino M, Yeh C-H, Teng P-Y, Chiu P-W, Sawada H, Suenaga K (2017) Unexpected huge dimerization ratio in one-dimensional carbon atomic Chains. Nano Lett 17(1):494–500. https://doi.org/10.1021/acs.nanolett.6b04534

    Article  CAS  Google Scholar 

  121. Cretu O, Komsa H-P, Lehtinen O, Algara-Siller G, Kaiser U, Suenaga K, Krasheninnikov AV (2014) Experimental observation of boron nitride Chains. ACS Nano 8(12):11950–11957. https://doi.org/10.1021/nn5046147

    Article  CAS  Google Scholar 

  122. **ao Z, Qiao J, Lu W, Ye G, Chen X, Zhang Z, Ji W, Li J, ** C (2017) Deriving phosphorus atomic chains from few-layer black phosphorus. Nano Res 10(7):2519–2526. https://doi.org/10.1007/s12274-017-1456-z

    Article  CAS  Google Scholar 

  123. Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J-H, ** C-H, Li J-X, Wang X-R, Sun L-T, Guo W (2013) Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat Commun 4:1776. https://doi.org/10.1038/ncomms2803

    Article  CAS  Google Scholar 

  124. Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin KI, Cuong NT, Otani M, Okada S, Lupini AR (2014) Flexible metallic nanowires with self-adaptive contacts to semiconducting transition-metal dichalcogenide monolayers. Nat Nanotechnol 9(6):436–442. https://doi.org/10.1038/nnano.2014.81

    Article  CAS  Google Scholar 

  125. Lin J, Zhang Y, Zhou W, Pantelides ST (2016) Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 10(2):2782–2790. https://doi.org/10.1021/acsnano.5b07888

    Article  CAS  Google Scholar 

  126. Xu T, Zhou Y, Tan X, Yin K, He L, Banhart F, Sun L (2017) Creating the smallest BN nanotube from bilayer h-BN. Adv Func Mater 27(19):1603897. https://doi.org/10.1002/adfm.201603897

    Article  CAS  Google Scholar 

  127. Li J, Banhart F (2005) The deformation of single, nanometer-sized metal crystals in graphitic shells. Adv Mater 17(12):1539–1542. https://doi.org/10.1002/adma.200401917

    Article  CAS  Google Scholar 

  128. Banhart F, Charlier J-C, Ajayan P (2000) Dynamic behavior of nickel atoms in graphitic networks. Phys Rev Lett 84(4):686. https://doi.org/10.1103/PhysRevLett.84.686

    Article  CAS  Google Scholar 

  129. Sun L, Krasheninnikov AV, Ahlgren T, Nordlund K, Banhart F (2008) Plastic deformation of single nanometer-sized crystals. Phys Rev Lett 101(15):156101. https://doi.org/10.1103/PhysRevLett.101.156101

    Article  CAS  Google Scholar 

  130. Sun L, Banhart F, Krasheninnikov A, Rodriguez-Manzo J, Terrones M, Ajayan P (2006) Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312(5777):1199–1202. https://doi.org/10.1126/science.1124594

    Article  CAS  Google Scholar 

  131. Lagos M, Sato F, Bettini J, Rodrigues V, Galvao DS, Ugarte D (2009) Observation of the smallest metal nanotube with a square cross-section. Nat Nanotechnol 4(3):149–152. https://doi.org/10.1038/NNANO.2008.414

    Article  CAS  Google Scholar 

  132. Zhao P, Guan X, Zheng H, Jia S, Li L, Liu H, Zhao L, Sheng H, Meng W, Zhuang Y (2019) Surface-and strain-mediated reversible phase transformation in quantum-confined ZnO nanowires. Phys Rev Lett 123(21):216101. https://doi.org/10.1103/PhysRevLett.123.216101

    Article  CAS  Google Scholar 

  133. Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y (2020) Imaging Beam-Sensitive materials by electron microscopy. Adv Mater 32:1907619. https://doi.org/10.1002/adma.201907619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, T., Zheng, H., Wang, J., Banhart, F., Sun, L. (2023). Electron Beam Irradiation Effects and In-Situ Irradiation of Nanomaterials. In: Sun, L., Xu, T., Zhang, Z. (eds) In-Situ Transmission Electron Microscopy. Springer, Singapore. https://doi.org/10.1007/978-981-19-6845-7_2

Download citation

Publish with us

Policies and ethics

Navigation