Transforming Agri-Crop Residue Biomass for Value Addition: An Innovative Strategy Toward Resilient Circular Economy

  • Living reference work entry
  • First Online:
Handbook of Biomass

Abstract

Cereal straws, such as barley straw, wheat straw, maize, corncobs, corn stove, miscanthus, rice straw, sugarcane bagasse, manure, seaweeds and algae, are the most common agricultural wastes. Burning agricultural crop leftovers after crop harvesting poses a variety of environmental risks, including the depletion of nutrients and soil microbes as well as the release of hazardous chemicals such as greenhouse gases. These wastes could be used to create products with additional value because they have a steady composition of cellulose, hemicelluloses, and lignin. Thus, to re-utilize the agri-crop residues for economic growth, regenerative agriculture-based strategies are gaining impetus. Regenerative agriculture could serve as an innovative approach toward the attainment of a “Zero-waste” resilient economy. Agricultural residue waste could be effectively exploited for economic gains, such as waste feedstock that is readily available in big quantities at a low cost for a variety of uses. Agricultural trash can be used to build numerous kinds of bioenergy and other products with additional value. With the development of cost-competitive biomass conversion technology, using biomass to produce cleaner fuels like hydrogen, biogas, alcohols, biodiesel, and sustainable cellulose-based goods for multi-dimensional utilization may become practical. Furthermore, the potential use of the agri-crop residue biomass would also contribute to resolving environmental problems like the emission of greenhouse gases and poor impact on soil properties and its microflora that originated due to the burning of the agricultural residue biomass (ARB). Hence, sustainable biomass residue management by biomass waste to value-added products generation is an eco-friendly and cost-effective strategy that might certainly strengthen the circular economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • D. Abdollahdokht, Y. Gao, S. Faramarz, A. Poustforoosh, M. Abbasi, G. Asadikaram, M.H. Nematollahi, Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chem. Biologic. Technol. Agric. 9(1), 1–19 (2022)

    Google Scholar 

  • E. Alehosseini, S.M. Jafari, Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci. Technol. 91, 116–128 (2019)

    Article  CAS  Google Scholar 

  • S. Anbus, J. Padma, K. Punithavalli, P. Saranraj, Fruits peel waste as a novel media for the growth of economically important fungi. J. Pharmacogn. Phytochem. 6(6), 426–428 (2017)

    Google Scholar 

  • D. Aquino, A.D. Barrio, N.X. Trach, N.T. Hai, D.N. Khang, N.T. Toan, N.V. Hung, Sustainable rice straw management, in Rice Straw-based Fodder for Ruminants, (Springer Nature Switzerland AG, 2020), pp. 111–129

    Google Scholar 

  • S. Bala, D. Garg, K. Sridhar, B.S. Inbaraj, R. Singh, S. Kamma, et al., Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food pharma sector. Bioengineering 10(2), 152 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N.R. Baral, A. Shah, Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour. Technol. 232, 331–343 (2017)

    Article  CAS  PubMed  Google Scholar 

  • P. Bhattacharyya, J. Bisen, D. Bhaduri, S. Priyadarsini, S. Munda, M. Chakraborti, et al., Turn the wheel from waste to wealth: economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. Sci. Total Environ. 775, 145896 (2021)

    Article  CAS  Google Scholar 

  • E. Capanoglu, E. Nemli, F. Tomas-Barberan, Novel approaches in the valorization of agricultural wastes and their applications. J. Agric. Food Chem. 70(23), 6787–6804 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A.K. Chaudhari, V.K. Singh, S. Das, N.K. Dubey, Nanoencapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem. Toxicol. 149, 112019 (2021)

    Article  CAS  PubMed  Google Scholar 

  • B.S. Chauhan, G. Mahajan, V. Sardana, J. Timsina, M.L. Jat, Productivity and sustainability of the rice–wheat crop** system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies. Adv. Agron. 117, 315–369 (2012)

    Article  CAS  Google Scholar 

  • F. Cheng, C.E. Brewer, Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis+ fermentation and anaerobic digestion. Renew. Sust. Energ. Rev. 146, 111167 (2021)

    Article  CAS  Google Scholar 

  • R.K. Chhetri, N. Aryal, S. Kharel, R.C. Poudel, D. Pant, Agro-based industrial wastes as potent sources of alternative energy and organic fertilizers, in Current Developments in Biotechnology and Bioengineering, (Elsevier, 2020), pp. 121–136

    Chapter  Google Scholar 

  • C.R. Chilakamarry, A.M. Sakinah, A.W. Zularisam, R. Sirohi, I.A. Khilji, N. Ahmad, A. Pandey, Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 343, 126065 (2022)

    Article  CAS  PubMed  Google Scholar 

  • A. da Conceição Gomes, M.I. Rodrigues, D. de França Passos, A.M. de Castro, L.M.M. Santa Anna, N. Pereira Jr., Acetone–butanol–ethanol fermentation from sugarcane bagasse hydrolysates: Utilization of C5 and C6 sugars. Electron. J. Biotechnol. 42, 16–22 (2019)

    Article  Google Scholar 

  • D. Das, H. Deka, Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: changes in nutrient profile and assessment of the maturity of the end products. Environ. Sci. Pollut. Res. 28, 35717–35727 (2021)

    Article  CAS  Google Scholar 

  • C.A. Das, V.G. Kumar, T.S. Dhas, V. Karthick, C.V. Kumar, Nanomaterials in anticancer applications and their mechanism of action-A review. Nanomedicine 47, 102613 (2023)

    Article  CAS  PubMed  Google Scholar 

  • A. Datta, M.A. Emmanuel, N.K. Ram, S. Dhingra, Crop residue management: solution to achieve better air quality (TERI, New Delhi, 2020), p. 9

    Google Scholar 

  • T. Dey, T. Bhattacharjee, P. Nag, A. Ghati, A. Kuila, Valorization of agro-waste into value added products for sustainable development. Bioresour. Technol. Rep. 16, 100834 (2021)

    Article  CAS  Google Scholar 

  • A. Dutta, A. Patra, K.K. Hazra, C.P. Nath, N. Kumar, A. Rakshit, A state of the art review in crop residue burning in India: Previous knowledge, present circumstances and future strategies. Environ. Challen. 100581, 100581 (2022)

    Article  Google Scholar 

  • K.S. Gangwar, K.K. Singh, S.K. Sharma, O.K. Tomar, Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil Tillage Res. 88(1–2), 242–252 (2006)

    Article  Google Scholar 

  • K. Ghasemi, S. Tasnim, S. Mahmud, PCM, nano/microencapsulation and slurries: A review of fundamentals, categories, fabrication, numerical models and applications. Sustain. Energy Technol. Assess. 52, 102084 (2022)

    Google Scholar 

  • B. Giri, A. Varma (eds.), Soil Health (Springer International Publishing, Cham, 2020)

    Google Scholar 

  • N. Gontard, U. Sonesson, M. Birkved, M. Majone, D. Bolzonella, A. Celli, et al., A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 48(6), 614–654 (2018)

    Article  Google Scholar 

  • K. Hartley, R. van Santen, J. Kirchherr, Policies for transitioning towards a circular economy: Expectations from the European Union (EU). Resour. Conserv. Recycl. 155, 104634 (2020)

    Article  Google Scholar 

  • M. Hiloidhari, D. Das, D.C. Baruah, Bioenergy potential from crop residue biomass in India. Renew. Sust. Energ. Rev. 32, 504–512 (2014)

    Article  Google Scholar 

  • https://www.indiabudget.gov.in/economicsurvey/doc/Statistical-Appendix-in-English.pdf

  • https://www.zef.de/fileadmin/user_upload/tbeuchelt_download_Virchow%20et%20al_2014_ValueWebApproach-SouthCanAlsoBenefitFromBioeconomy.pdf

  • Y. Jiang, Y. Lv, R. Wu, Y. Sui, C. Chen, F. **n, et al., Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresour. Technol. Rep. 7, 100245 (2019)

    Article  Google Scholar 

  • R. Kapoor, P. Ghosh, M. Kumar, S. Sengupta, A. Gupta, S.S. Kumar, et al., Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 304, 123036 (2020)

    Article  CAS  PubMed  Google Scholar 

  • P. Kumar, R.K. Singh, Selection of sustainable solutions for crop residue burning: An environmental issue in northwestern states of India. Environ. Dev. Sustain. 23, 3696–3730 (2021)

    Article  Google Scholar 

  • J. Lehmann, S. Joseph, Biochar for environmental management: An introduction, in Biochar for Environmental Management, (Routledge, 2015), pp. 1–13

    Chapter  Google Scholar 

  • H.Y. Leong, C.K. Chang, K.S. Khoo, K.W. Chew, S.R. Chia, J.W. Lim, et al., Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels. 14(1), 1–15 (2021)

    Google Scholar 

  • S.F. Lim, S.U. Matu, Utilization of agro-wastes to produce biofertilizer. Int. J. Energy Environ. Eng. 6, 31–35 (2015)

    Article  CAS  Google Scholar 

  • S.K. Lohan, H.S. Jat, A.K. Yadav, H.S. Sidhu, M.L. Jat, M. Choudhary, et al., Burning issues of paddy residue management in north-west states of India. Renew. Sust. Energ. Rev. 81, 693–706 (2018)

    Article  Google Scholar 

  • B. Majumder, B. Mandal, P.K. Bandyopadhyay, A. Gangopadhyay, P.K. Mani, A.L. Kundu, D. Mazumdar, Organic amendments influence soil organic carbon pools and rice–wheat productivity. Soil Sci. Soc. Am. J. 72(3), 775–785 (2008)

    Article  CAS  Google Scholar 

  • J. Marin, B. De Meulder, Interpreting circularity. Circular city representations concealing transition drivers. Sustainability 10(5), 1310 (2018)

    Article  Google Scholar 

  • L. Meng, A. Alengebawy, P. Ai, K. **, M. Chen, Y. Pan, Techno-economic assessment of three modes of large-scale crop residue utilization projects in china. Energies 13(14), 3729 (2020)

    Article  Google Scholar 

  • S. Mia, F.A. Dijkstra, B. Singh, Long-term aging of biochar: A molecular understanding with agricultural and environmental implications. Adv. Agron. 141, 1–51 (2017)

    Article  Google Scholar 

  • L. Milios, Advancing to a circular economy: Three essential ingredients for a comprehensive policy mix. Sustain. Sci. 13(3), 861–878 (2018)

    Article  PubMed  Google Scholar 

  • S. Mittal, E.O. Ahlgren, P.R. Shukla, Future biogas resource potential in India: a bottom-up analysis. Renew. Energy 141, 379–389 (2019)

    Article  Google Scholar 

  • P. Nyambo, H.A. Mupambwa, A.D. Nciizah, Biochar enhances the capacity of climate-smart agriculture to mitigate climate change, in Handbook of Climate Change Management: Research, Leadership, Transformation, (2020), pp. 1–18

    Google Scholar 

  • D.C. Olk, K.G. Cassman, K. Schmidt-Rohr, M.M. Anders, J.D. Mao, J.L. Deenik, Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biol. Biochem. 38, 3303–3312 (2006). https://doi.org/10.1016/j.soilbio.2006.04.009

    Article  CAS  Google Scholar 

  • V.V. Pandey, A. Kumari, M. Kumar, J. Saxena, C. Kainthola, A. Pandey, Mushroom cultivation: Substantial key to food security. J. Appl. Nat. Sci. 10(4), 1325–1331 (2018)

    Article  Google Scholar 

  • V. Passoth, M. Sandgren, Biofuel production from straw hydrolysates: Current achievements and perspectives. Appl. Microbiol. Biotechnol. 103, 5105–5116 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Pateiro, B. Gómez, P.E. Munekata, F.J. Barba, P. Putnik, D.B. Kovačević, J.M. Lorenzo, Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 26(6), 1547 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R. Puttasiddaiah, R. Lakshminarayana, N.L. Somashekar, V.K. Gupta, B.S. Inbaraj, Z. Usmani, et al., Advances in nanofabrication technology for nutraceuticals: New insights and future trends. Bioengineering 9(9), 478 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y.I. Ramnarain, A.A. Ansari, L. Ori, Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int. J. Recycl. Org. Waste Agric. 8, 23–36 (2019)

    Article  Google Scholar 

  • K. Rasool, S. Hussain, A. Shahzad, W. Miran, K.A. Mahmoud, N. Ali, F. Almomani, Comprehensive insights into sustainable conversion of agricultural and food waste into microbial protein for animal feed production. Rev. Environ. Sci. Biotechnol., 22, 1–36 (2023)

    Google Scholar 

  • T. Ronzon, A.I. Sanjuán, Friends or foes? A compatibility assessment of bioeconomy-related Sustainable Development Goals for European policy coherence. J. Clean. Prod. 254(119), 832 (2020)

    Google Scholar 

  • M. Roohi, M.S. Arif, T. Guillaume, T. Yasmeen, M. Riaz, A. Shakoor, et al., Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercrop** system on low fertility soils. Geoderma 428(116), 152 (2022)

    Google Scholar 

  • A. Roussos, N. Misailidis, A. Koulouris, F. Zimbardi, D. Petrides, A feasibility study of cellulosic isobutanol production – Process simulation and economic analysis. Processes 7(10), 667 (2019)

    Article  CAS  Google Scholar 

  • A. Saravanan, P.S. Kumar, S. Jeevanantham, S. Karishma, D.V.N. Vo, Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresour. Technol. 344(126), 203 (2022)

    Google Scholar 

  • F. Savini, The economy that runs on waste: Accumulation in the circular city. J. Environ. Policy Plan. 21(6), 675–691 (2019)

    Article  Google Scholar 

  • P. Saxena, S. Sonwani, A. Srivastava, M. Jain, A. Srivastava, A. Bharti, et al., Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon 7(5), e06973 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D.K. Sharma, Emerging biomass conversion technologies for obtaining value-added chemicals and fuels from biomass. Proc. Indian Natl. Sci. Acad. 81(4), 755–764 (2015)

    Article  Google Scholar 

  • V. Sharma, M.L. Tsai, P. Nargotra, C.W. Chen, C.H. Kuo, P.P. Sun, C.D. Dong, Agro-industrial food waste as a low-cost substrate for sustainable production of industrial enzymes: A critical review. Catalysts 12(11), 1373 (2022)

    Article  CAS  Google Scholar 

  • A. Siddiqua, J.N. Hahladakis, W.A.K. Al-Attiya, An overview of the environmental pollution and health effects associated with waste landfilling and open dum**. Environ. Sci. Pollut. Res. 29(39), 58,514–58,536 (2022)

    Article  Google Scholar 

  • J. Singh, N. Singhal, S. Singhal, M. Sharma, S. Agarwal, S. Arora, Environmental implications of rice and wheat stubble burning in north-western states of India, in Advances in Health and Environment Safety: Select Proceedings of HSFEA 2016, (Springer, Singapore, 2018), pp. 47–55

    Chapter  Google Scholar 

  • A.K. Singh, A. Upadhyaya, S. Kumari, P.K. Sundaram, P. Jeet, Role of agriculture in making India $5 trillion economy under corona pandemic circumstance: Role of agriculture in Indian economy. J. AgriSear. 7(2), 54–58 (2020)

    Google Scholar 

  • D.N. Singh, M. Tripathi, V.S. Singh, R. Singh, R. Gaur, N. Pathak, Management of agriculture waste: Bioconversion of agro-waste into valued products, in Bioremediation: Challenges and Advancements, ed. by M. Tripathi, D.N. Singh, vol. 56, (Bentham Science Publisher, Singapore, 2022), pp. 225–253

    Google Scholar 

  • T.E. Sutcliffe, I.A. Ortega Alvarado, Domesticating circular economy? An enquiry into Norwegian subnational authorities’ process of implementing circularity. J. Environ. Policy Plan. 23(6), 752–765 (2021)

    Article  Google Scholar 

  • M. Tabatabaei, M. Aghbashlo, E. Valijanian, H.K.S. Panahi, A.S. Nizami, H. Ghanavati, et al., A comprehensive review on recent biological innovations to improve biogas production, part 1: upstream strategies. Renew. Energy 146, 1204–1220 (2020)

    Article  CAS  Google Scholar 

  • J.A. Takahashi, B.V. Barbosa, B.D.A. Martins, P.C. Guirlanda, M. AF Moura, Use of the versatility of fungal metabolism to meet modern demands for healthy aging, functional foods, and sustainability. J. Fungi 6(4), 223 (2020)

    Article  CAS  Google Scholar 

  • A.T. Ubando, C.B. Felix, W.H. Chen, Biorefineries in circular bioeconomy: A comprehensive review. Bioresour. Technol. 299(122), 585 (2020)

    Google Scholar 

  • V. Venkatramanan, S. Shah, A.K. Rai, R. Prasad, Nexus between crop residue burning, bioeconomy and sustainable development goals over north-western India. Front. Ener. Res. 8(614), 212 (2021)

    Google Scholar 

  • S.S. Verma, Technologies for stubble use. J. Agric. Life Sci 1(2), 106–110 (2014)

    Google Scholar 

  • D. Virchow, T.D. Beuchelt, A. Kuhn, M. Denich, Biomass-based value webs: A novel perspective for emerging bioeconomies in Sub-Saharan Africa, in Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development, (2016), pp. 225–238

    Chapter  Google Scholar 

  • M. Yadav, K. Paritosh, N. Pareek, V. Vivekanand, Coupled treatment of lignocellulosic agricultural residues for augmented biomethanation. J. Clean. Prod. 213, 75–88 (2019)

    Article  CAS  Google Scholar 

  • M. Yang, L. Chen, J. Wang, G. Msigwa, A.I. Osman, S. Fawzy, et al., Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 21(1), 55–80 (2023)

    Google Scholar 

  • K.J. Yong, T.Y. Wu, Second-generation bioenergy from oilseed crop residues: Recent technologies, techno-economic assessments and policies. Energy Convers. Manag. 267(115), 869 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhavi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, C., Pathak, P., Gautam, S. (2023). Transforming Agri-Crop Residue Biomass for Value Addition: An Innovative Strategy Toward Resilient Circular Economy. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-19-6772-6_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6772-6_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6772-6

  • Online ISBN: 978-981-19-6772-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation