Potential Applications of Nanocellulose

  • Living reference work entry
  • First Online:
Handbook of Biomass
  • 15 Accesses

Abstract

Current scenario of environmental concerns has popped up an increasing demand for the sustainable development of society through compulsive use of renewable materials. Major focus areas of researchers have always been to search inexpensive and biodegradable biomaterials to replace toxic and costly materials used currently. Nanocomposites have always been the favorite choice of industry for their wide realm of applications as in healthcare, gas barriers, packaging, sensors, and most importantly as energy storage devices owing to their electrochemical properties when fabricated with suitable fillers. Due to their creation from sustainable biomaterials, cellulose-based bio nanocomposites have brought a fourth dimension to this field of study. Researchers have created cellulose-based bio nanocomposites for energy devices like supercapacitors and batteries by combining a variety of micro- and nanocellulosics with inorganic nanomaterials and smart materials. When utilized in these contexts, cellulosic components give the end use matrix a homogenous porosity structure and boost the loading capacity of active substances. As a result, these can contribute to the development of biodegradable, portable, flexible, and long-lasting energy storage solutions. The current chapter provides an introduction to the prospective uses of nanocellulose and its intelligent vast domains of diverse capabilities. Nanocellulose has been thoroughly studied as a substrate for conducting biocomposites, biosensors, in tissue scaffolds, gas barrier material, and other possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39 (2016). https://doi.org/10.1016/j.copbio.2016.01.002

  • C. Aulin, G. Salazar-Alvarez, T. Lindstrom, High strength, flexible and transparent nanofibrillated cellulose – Nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4, 6622–6628 (2012)

    Article  CAS  PubMed  Google Scholar 

  • C. Aulin, E. Karabulut, A. Tran, L. Waagberg, T. Lindstroem, Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl. Mater. Interfaces 5, 7352–7359 (2013)

    Article  CAS  PubMed  Google Scholar 

  • T. Aytug, M.S. Rager, W. Higgins, F.G. Brown, G.M. Veith, C.M. Rouleau, H. Wang, Z.D. Hood, S.M. Mahurin, R.T. Mayes, Vacuum-assisted low-temperature synthesis of reduced graphene oxide thin film electrodes for high performance transparent and flexible all-solid-state supercapacitors. ACS Appl. Mater. Interfaces 10, 11008–11017 (2018)

    Article  CAS  PubMed  Google Scholar 

  • S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun, B. Khelifi, S. Marais, A. Dufresne, Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr. Polym. 83, 1740–1748 (2011)

    Article  CAS  Google Scholar 

  • F. Bettaieb, R. Khiari, A. Dufresne, M.F. Mhenni, M.N. Belgacem, Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydr. Polym. 123, 99–104 (2015)

    Article  CAS  PubMed  Google Scholar 

  • B. Bideau, J. Bras, N. Adoui, E. Loranger, C. Daneault, Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization. Food Packag. Shelf Life 12, 1–8 (2017). https://doi.org/10.1016/j.fpsl.2017.01.007

    Article  Google Scholar 

  • A. Bodin, S. Concaro, M. Brittberg, P.J. Gatenholm, Tissue Eng. Regen. Med. 1, 406 (2007)

    Article  CAS  Google Scholar 

  • J.R. Capadona, D.J. Tyler, C.A. Zorman, S.J. Rowan, C. Weder, MRS Bull. 37, 581 (2012)

    Article  CAS  Google Scholar 

  • A. Chiappone, J.R. Nair, C. Gerbaldi, L. Jabbour, R. Bongiovanni, et al., Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J. Power Sources 196(23), 10280–10288 (2011)

    Article  CAS  Google Scholar 

  • R.A. Chowdhury, M. Nuruddin, C. Clarkson, F. Montes, J. Howarter, J.P. Youngblood, Cellulose nanocrystal (CNC) coatings with controlled anisotropy as high-performance gas barrier films. ACS Appl. Mater. Interfaces 11(1), 1376–1383 (2019). https://doi.org/10.1021/acsami.8b16897

    Article  CAS  PubMed  Google Scholar 

  • W.K. Czaja, D.J. Young, M. Kawecki, R.M. Brown, Biomacromolecules 8, 1 (2007)

    Article  CAS  PubMed  Google Scholar 

  • L. Dai, Z. Long, Y. Zhao, B. Wang, J. Chen, Comparison of hydroxypropyl and carboxymethyl guar for the preparation of nanocellulose composite films. Cellulose 23, 2989–2999 (2016)

    Article  CAS  Google Scholar 

  • A.K. Das, M.N. Islam, R.K. Ghosh, R. Maryana, Cellulose-based bionanocomposites in energy storage applications – A review. Heliyon 9, e13028 (2023). https://doi.org/10.1016/j.heliyon.2023.e13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N.K. Dehkordi, M. Minaiyan, A. Talebi, V. Akbari, A. Taheri, Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing. Biomed. Mater. 14, 035003 (2019). https://doi.org/10.1088/1748-605X/ab026c

    Article  CAS  Google Scholar 

  • L.B. Dong, G.M. Liang, C.J. Xu, D.Y. Ren, J.J. Wang, Z.Z. Pan, B.H. Li, F.Y. Kang, Q.H. Yang, Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability. J. Mater. Chem. A 5, 19934–19942 (2017)

    Article  CAS  Google Scholar 

  • N. Drogat, R. Granet, V. Sol, A. Memmi, N. Saad, C. Klein Koerkamp, P. Bressollier, P. Krausz, Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanopart. Res. 13, 1557–1562 (2010)

    Article  Google Scholar 

  • A. Dufresne, J. Castaño, Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch – Stärke 69, 1500307 (2016). https://doi.org/10.1002/star.201500307

    Article  CAS  Google Scholar 

  • A.G. Dumanli, H.M. van der Kooij, G. Kamita, E. Reisner, J.J. Baumberg, U. Steiner, S. Vignolini, Digital color in cellulose nanocrystal films. ACS Appl. Mater. Interfaces 6, 12302–12306 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • A. Eftekhari, Nanostructured Conductive Polymers (Wiley, Hoboken, 2011)

    Google Scholar 

  • E. Fortunati, M. Peltzer, I. Armentano, L. Torre, A. Jiménez, J.M. Kenny, Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. 90(2), 948–956 (2012). https://doi.org/10.1016/j.carbpol.2012.06.025

  • E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Gonçalves, et al., High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett. 29(9), 988–990 (2008)

    Article  Google Scholar 

  • G. Fotie, S. Limbo, L. Piergiovanni, Manufacturing of food packaging based on nanocellulose: Current advances and challenges. Nano 10(9), 1726 (2020). https://doi.org/10.3390/nano10091726. MDPI AG

    Article  CAS  Google Scholar 

  • J. George, S. Sabapathi, Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl. 8, 45–54 (2015). https://doi.org/10.2147/NSA.S64386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N. Grishkewich, N. Mohammed, J. Tang, K.C. Tam, Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci. 29, 32–45 (2017). https://doi.org/10.1016/j.cocis.2017.01.005

    Article  CAS  Google Scholar 

  • H.H. Hsu, W. Zhong, Nanocellulose-based conductive membranes for free-standing supercapacitors: A review. Membranes 9, 74 (2019). https://doi.org/10.3390/membranes9060074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R. Hu, J. Zhao, G. Zhu, J. Zheng, Fabrication of flexible free-standing reduced graphene oxide/polyaniline nanocomposite film for all-solid-state flexible supercapacitor. Electrochim. Acta 261, 151–159 (2018)

    Article  CAS  Google Scholar 

  • M. Ioelovich, Characterization of various kinds of nanocellulose, in Handbook of Nanocellulose and Cellulose Nanocomposites (2017) pp. 51–100. https://doi.org/10.1002/9783527689972.ch2

  • M. Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, R. Davoodi, Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 22, 935–969 (2015)

    Article  CAS  Google Scholar 

  • M. Jorfi, E.J. Foster, Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci. 132 (2015)

    Google Scholar 

  • A. Kafy, A. Akther, M.I.R. Shishir, H.C. Kim, Y. Yun, J. Kim, Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sens. Actuators A Phys. 247, 221–226 (2016)

    Article  CAS  Google Scholar 

  • K.H.M. Kan, J. Li, K. Wijesekera, E.D. Cranston, Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromolecules 14, 3130–3139 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Z.P. Kang, K.L. Jiao, X.P. Xu, R.Y. Peng, S.Q. Jiao, Z.Q. Hu, Graphene oxide-supported carbon nanofiber-like network derived from polyaniline: A novel composite for enhanced glucose oxidase bioelectrode performance. Biosens. Bioelectron. 96, 367–372 (2017)

    Article  CAS  PubMed  Google Scholar 

  • W. Li, S. Wang, W. Wang, C. Qin, M. Wu, Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications. Cellulose 26, 3271–3284 (2019)

    Article  CAS  Google Scholar 

  • H. Liimatainen, N. Ezekiel, R. Sliz, K. Ohenoja, J.A. Sirvio, L. Berglund, O. Hormi, J. Niinimaki, High-strength nanocellulose – Talc hybrid barrier films. ACS Appl. Mater. Interfaces 5, 13412–13418 (2013)

    Article  CAS  PubMed  Google Scholar 

  • N. Lin, A. Dufresne, Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 59, 302–325 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  • Y. Lin, H. Zhang, W. Deng, D. Zhang, N. Li, Q. Wu, C. He, In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/polyaniline/grapheme composite. J. Power Sour. 384, 278–286 (2018)

    Article  CAS  Google Scholar 

  • A. Maitra, S.K. Karan, S. Paria, A.K. Das, R. Bera, L. Halder, S.K. Si, A. Bera, B.B. Khatua, Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40, 633–645 (2017)

    Article  CAS  Google Scholar 

  • A.P. Mathew, K. Oksman, D. Pierron, M.-F. Harmand, Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. 87(3), 2291–2298 (2012). https://doi.org/10.1016/j.carbpol.2011.10.063

  • T. Miloh, B. Spivak, A. Yarin, Needleless electrospinning: Electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. J. Appl. Phys. 106, 114910 (2009)

    Article  Google Scholar 

  • S.S. Nair, J. Zhu, Y. Deng, A.J. Ragauskas, High performance green barriers based on nanocellulose. Sustain. Chem. Processes 2(1), 23 (2014). https://doi.org/10.1186/s40508-014-0023-0

    Article  CAS  Google Scholar 

  • D.A. Osorio, B.E. Lee, J.M. Kwiecien, X. Wang, I. Shahid, A.L. Hurley, et al., Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta Biomater. 87, 152–165 (2019). https://doi.org/10.1016/j.actbio.2019.01.049

    Article  CAS  PubMed  Google Scholar 

  • R.R. Palem, S. Ramesh, H.M. Yadav, J.H. Kim, A. Sivasamy, H.S. Kim, et al., Nanostructured Fe2O3@nitrogen-doped multiwalled nanotube/cellulose nanocrystal composite material electrodes for high-performance supercapacitor applications. J. Mater. Res. Technol. 9, 7615e27 (2020). https://doi.org/10.1016/J.JMRT.2020.05.058

    Article  Google Scholar 

  • D. Plackett, K. Letchford, J. Jackson, H. Burt, A review of nanocellulose as a novel vehicle for drug delivery. Nord. Pulp Paper Res. J. 29, 105–118 (2014). https://doi.org/10.3183/npprj-2014-29-01-p105-118

    Article  CAS  Google Scholar 

  • S. Qin, M.G. Pour, S. Lazar, O. Koklukaya, J. Gerringer, Y. Song, L. Wagberg, J.C. Grunlan, Super gas barrier and fire resistance of nanoplatelet/nanofibril multilayer thin films. Adv. Mater. Interfaces 6, 1801424 (2019)

    Article  Google Scholar 

  • J.W. Rhim, Physical and mechanical properties of water resistant sodium alginate films. Lebensmittel-Wissenschaft Und-Technologie-Food Science and Technology 37, 323–330 (2004)

    Article  CAS  Google Scholar 

  • M.F. Rosa, E.S. Medeiros, J.A. Malmonge, K.S. Gregorski, D.F. Wood, L.H.C. Mattoso, G. Glenn, W.J. Orts, S.H. Imam, Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydr. Polym. 81, 83–92 (2010)

    Article  CAS  Google Scholar 

  • S. Saengerlaub, E. Kucukpinar, K. Mueller, Desiccant films made of low -density polyethylene with dispersed silica gel water vapor absorption, permeability (H2O, N-2, O-2, CO2), and mechanical properties. Materials 12, 2304 (2019)

    Article  CAS  Google Scholar 

  • H. Seddiqi, E. Oliaei, H. Honarkar, J. **, L.C. Geonzon, R.G. Bacabac, J. Klein-Nulend, Cellulose and its derivatives: Towards biomedical applications. Cellulose 28, 1893–1931 (2021). https://doi.org/10.1007/s10570-020-03674-w

    Article  CAS  Google Scholar 

  • S. Sharma, X. Zhang, S.S. Nair, A. Ragauskas, J. Zhu, Y. Deng, Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv. 4, 45136–45142 (2014)

    Article  CAS  Google Scholar 

  • R.R. Silva, P.A. Raymundo-Pereira, A.M. Campos, D. Wilson, C.G. Otoni, H.S. Barud, et al., Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 218, 121153 (2020). https://doi.org/10.1016/J.TALANTA.2020.121153

    Article  CAS  PubMed  Google Scholar 

  • J.A. Sirvio, A. Kolehmainen, H. Liimatainen, J. Niinimaki, O.E.O. Hormi, Biocomposite cellulose-alginate films: Promising packaging materials. Food Chem. 151, 343–351 (2014)

    Article  CAS  PubMed  Google Scholar 

  • A. Subhedar, S. Bhadauria, S. Ahankari, H. Kargarzadeh, Nanocellulose in biomedical and biosensing applications: A review. Int. J. Biol. Macromol., S0141813020348704 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.217

  • H. Takagi, A. Nakagaito, K. Nishimura, T. Matsui, Mechanical characterisation of nanocellulose composites after structural modification. High Perform. Optim. Des. Struct. Mater. II(166), 335–341 (2016)

    Article  Google Scholar 

  • G.K. Tummala, T. Joffre, R. Rojas, C. Persson, A. Mihranyan, Strain-induced stiffening of nanocellulose-reinforced poly (vinyl alcohol) hydrogels mimicking collagenous soft tissues. Soft Matter 13, 3936e45 (2017)

    Article  Google Scholar 

  • R.T. Varghese, R.M. Cherian, C.J. Chirayi, T. Antony, H. Kargarzadeh, S. Thomas, Nanocellulose as an avenue for drug delivery applications: A mini-review. J. Compos. Sci. 7(6), 210 (2023). https://doi.org/10.3390/jcs7060210

    Article  CAS  Google Scholar 

  • S. Vitta, M. Drillon, A. Derory, Magnetically responsive bacterial cellulose: Synthesis and magnetic studies. J. Appl. Phys. 108(5), 053905 (2010)

    Article  Google Scholar 

  • X. Wang, F. Cheng, J. Liu, J.-H. Smatt, D. Gepperth, M. Lastusaari, C. Xu, L. Hupa, Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater. 46, 286–298 (2016). https://doi.org/10.1016/j.actbio.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  • J. Wang, D.J. Gardner, N.M. Stark, D.W. Bousfield, M. Tajvidi, Z. Cai, Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 6(1), 49–70 (2018). https://doi.org/10.1021/acssuschemeng.7b03523

    Article  CAS  Google Scholar 

  • C. Weder, Science 319, 1370 (2008), 104. Dong, S.; Roman, M. Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications. J. Am. Chem. Soc. 2007, 129, 13810–13811

    Google Scholar 

  • Y. Wu, Y. Liang, C. Mei, L. Cai, A. Nadda, Q.V. Le, C. **a, Advanced nanocellulose-based gas barrier materials: Present status and prospects. Chemosphere 286, 131891 (2022). https://doi.org/10.1016/j.chemosphere.2021.131891

    Article  CAS  PubMed  Google Scholar 

  • C. Xu, L. Shi, L. Guo, X. Wang, X. Wang, H. Lian, Fabrication and characteristics of graphene oxide/nanocellulose fiber/poly(vinyl alcohol) film. J. Appl. Polym. Sci. 134 (2017)

    Google Scholar 

  • H. Yagyu, T. Saito, A. Isogai, H. Koga, M. Nogi, Chemical modification of cellulose nanofibers for the production of highly thermal resistant and optically transparent nanopaper for paper devices. ACS Appl. Mater. Interfaces 7, 22012–22017 (2015)

    Article  CAS  PubMed  Google Scholar 

  • F. Yin, L. Lin, S. Zhan, Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing. J. Biomater. Sci. Polym. Ed. 30, 190–201 (2019). https://doi.org/10.1080/09205063.2018.1558933

    Article  CAS  PubMed  Google Scholar 

  • G. Zheng, Y. Cui, E. Karabulut, L. WÃ¥gberg, H. Zhu, et al., Nanostructured paper for flexible energy and electronic devices. MRS Bull. 38(4), 320–325 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajalesh B. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nandakumar, N., Francis, V., Shasiya, P.S., Nair, A.B. (2024). Potential Applications of Nanocellulose. In: Thomas, S., Hosur, M., Pasquini, D., Jose Chirayil, C. (eds) Handbook of Biomass. Springer, Singapore. https://doi.org/10.1007/978-981-19-6772-6_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6772-6_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6772-6

  • Online ISBN: 978-981-19-6772-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation