A Review on Tracking Control of the Underactuated Vessel with Time Delays

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control ( ICGNC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 845))

Included in the following conference series:

  • 238 Accesses

Abstract

In this paper, the tracking control method of the underactuated vessel with time delays is studied. According to the classification of control methods based on time delay estimation(TDE) and model prediction, the control structures of five hybrid control methods are summarized and demonstrated. The Control methods are backstep** Control with Time Delay Estimation (BCTDE), Model-free Tracking Controller that Combines TDE, Adaptive fuzzy exponential terminal sliding mode control with dynamic gain strategies TDE, Sliding Mode Controller (SMC) based on a Smith Predictor (SP) and Backstep** Sliding Mode control method based on radial basis function(RBF) Neural Network Method and State prediction. Furthermore, based on the current domestic and foreign research, the future research direction of the underactuated vessel is summarized and prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 459.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 588.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 588.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zou, L.P.: Research on trajectory tracking control of underactuated surface vehicles[D]. Guangdong Ocean University 03, 77 (2021). https://doi.org/10.27788/d.cnki.ggdhy.2021.000038

    Article  Google Scholar 

  2. Reyhanoglu, M., van der Schaft, A., Mcclamroch, N.H., et al.: Dynamics and control of a class of underactuated mechanical systems [J]. IEEE Trans. Autom. Control 44(9), 1663–1671 (2017). https://doi.org/10.1109/9.788533

    Article  MathSciNet  MATH  Google Scholar 

  3. Manley, J.E.: Unmanned surface vehicles, 15 years of development [C. In: OCEANS 2008, pp. 1–4. IEEE (2008). https://doi.org/10.1109/OCEANS.2008.5289429

  4. Liao, Y., Zhang, M., Dong, Z., et al.: Methods of motion control for unmanned surface vehicle: state of the art and perspective [J]. Shipbuild. China 55(4), 206–216 (2014). https://doi.org/10.3969/j.issn.1000-4882.2014.04.025

    Article  Google Scholar 

  5. Bibuli M , Caccia M , Lapierre L . Path-Following Algorithms and Experiments for an Unmanned Surface Vehicle[C], 81–86 (2007). https://doi.org/10.1002/rob.v26:8

  6. Lei, Q., Zhang, W.: Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles[J]. IET Control Theory Appl. 11(8), 1293–1306 (2017). https://doi.org/10.1049/iet-cta.2017.0016

    Article  MathSciNet  Google Scholar 

  7. Xu-Guang, L.I., Zhang, Y.W., Feng, L.: Survey on complete stability study for time-delay systems[J]. Kongzhi yu Juece/Control Decis. 33(7), 1153–1170 (2018). https://doi.org/10.13195/j.kzyjc.2017.0862

    Article  MATH  Google Scholar 

  8. Gu, K., Kharitonov, V.L., Chen, J.: Stability of time-delay systems || Input-output stability[J], 275–308 (2003). https://doi.org/10.1007/978-1-4612-0039-0_8

  9. Li, X.G., Niculescu, S.I., Cela, A.: Analytic curve frequency-swee** stability tests for systems with commensurate delays[J]. Springerbriefs Electr. Comput. Eng. (2016). https://doi.org/10.1007/978-3-319-15717-7

    Article  MATH  Google Scholar 

  10. Youcef-Toumi, K., Ito O.: A time controller, delay, for systems with unknown dynamics[C]. In: American Control Conference, vol. 2009. IEEE (1988). https://doi.org/10.23919/ACC.1988.4789852

  11. Hsia, T.C., Gao, L.S.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers[C]. In: IEEE International Conference on Robotics and Automation, pp. 2070–2075. IEEE (1990). https://doi.org/10.1109/ROBOT.1990.126310

  12. Cho, G.R., Chang, P.H., Park, S.H., et al.: Robust tracking under nonlinear friction using time-delay control with internal model[J]. IEEE Trans. Control Syst. Technol. 17(6), 1406–1414 (2009)

    Article  Google Scholar 

  13. Liang, X., Qu, X., Wan, L., et al.: Three-dimensional path following of an underactuated AUV based on fuzzy backstep** sliding mode control[J]. Int. J. Fuzzy Syst. (2017). https://doi.org/10.1007/s40815-017-0386-y

    Article  Google Scholar 

  14. Juan, L., Zhang, Q., Cheng, X., et al.: Path following backstep** control of underactuated unmanned underwater vehicle[C]. In: IEEE International Conference on Mechatronics and Automation. IEEE (2015). https://doi.org/10.1109/ICMA.2015.7237839

  15. Cho, G.R., Li, J.H., Park, D., et al.: Robust trajectory tracking of autonomous underwater vehicles using back-step** control and time delay estimation[J]. Ocean Eng. 201, 107131 (2020). https://doi.org/10.1016/j.oceaneng.2020.107131

    Article  Google Scholar 

  16. Cho, G.R., Park, D.G., Kang, H., et al.: Horizontal trajectory tracking of underactuated AUV using backstep** approach - sciencedirect[J]. IFAC-PapersOnLine 52(16), 174–179 (2019). https://doi.org/10.1016/j.ifacol.2019.11.774

    Article  MathSciNet  Google Scholar 

  17. Cho, G.R., Kang, H., Lee, M., et al.: 3D space trajectory tracking of underactuated AUVs using back-step** control and time delay estimation[J]. IFAC PapersOnLine 54(16), 238–244 (2021). https://doi.org/10.1016/j.ifacol.2021.10.099

    Article  Google Scholar 

  18. Yan, J., Ban, H., Luo, X., et al.: Joint localization and tracking design for AUV with asynchronous clocks and state disturbances[J]. IEEE Trans. Veh. Technol. 68(5), 4707–4720 (2019). https://doi.org/10.1109/TVT.2019.2903212

    Article  Google Scholar 

  19. Wang, Y., Jiang, S., Bai, C., et al.: Trajectory tracking control of underwater vehicle-manipulator system using discrete time delay estimation[J]. IEEE Access 5(99), 7435–7443 (2017). https://doi.org/10.1109/ACCESS.2017.2701350

    Article  Google Scholar 

  20. Kim, M., Yu, S.C., Joe, H.: Dual-loop robust controller design for autonomous underwater vehicle under unknown environmental disturbances[J]. Electron. Lett. 52(5), 350–352 (2016). https://doi.org/10.1049/el.2015.3809

    Article  Google Scholar 

  21. Lakhekar, G.V., Waghmare, L.M.: Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle[J]. Int. J. Dyn. Control (2018). https://doi.org/10.1007/s40435-017-0387-6

    Article  MathSciNet  Google Scholar 

  22. Camacho, E.F., Ramrez, D.R., Limn, D., et al.: Model predictive control techniques for hybrid systems[J]. IFAC Proc. Vol. 42(17), 1–13 (2009). https://doi.org/10.3182/20090916-3-ES-3003.00003

    Article  Google Scholar 

  23. Wang, T., Gao, H., Qiu, J.: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control[J]. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 416–425 (2017). https://doi.org/10.1109/TNNLS.2015.2411671

    Article  MathSciNet  Google Scholar 

  24. Chen, H., Liu, Z.Y., **e, X.H.: Non-linear model predictive control: the state and open problems[J]. Control Decis. 16(4), 7 (2001). https://doi.org/10.13195/j.cd.2001.04.2.chenh.001

    Article  Google Scholar 

  25. Garcia, G.D.C., Camacho, O., Guanoluisa, D., et al.: An approach for trajectory tracking control of an underactuated autonomous underwater vehicle considering time delay[J]. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao E19(19), 42–55 (2019)

    Google Scholar 

  26. Zhang, L., Liu, T., Sun, Y., et al.: Research on neural network blind equalization algorithm with structure optimized by genetic algorithm[C]. In: International Conference on Natural Computation. IEEE (2010). https://doi.org/10.1109/ICNC.2010.5582871

  27. Michele, P., Franco, A., Riccardo, M., et al.: A robust iterative learning control for continuous-time nonlinear systems with disturbances[J]. Digit. Object Identifier 9, 147471–147480 (2021). https://doi.org/10.1109/ACCESS.2021.3124014

    Article  Google Scholar 

  28. Yong, M., Zn, A., Yy, B., et al.: Event-triggered fuzzy control of networked nonlinear underactuated unmanned surface vehicle - science direct[J]. Ocean Eng. 213, 107540 (2020). https://doi.org/10.1016/j.oceaneng.2020.107540

    Article  Google Scholar 

  29. Chen, H., Chen, Y., Wang, M.: Trajectory tracking for underactuated surface vessels with time delays and unknown control directions. IET Control Theory Appl. 16, 587–599 (2022). https://doi.org/10.1049/cth2.12250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhan Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y., Feng, Y., Chen, B. (2023). A Review on Tracking Control of the Underactuated Vessel with Time Delays. In: Yan, L., Duan, H., Deng, Y. (eds) Advances in Guidance, Navigation and Control. ICGNC 2022. Lecture Notes in Electrical Engineering, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-19-6613-2_4

Download citation

Publish with us

Policies and ethics

Navigation