Sliding Mode Attitude Control of Flexible Spacecraft with Rotational Components

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control ( ICGNC 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 845))

Included in the following conference series:

  • 137 Accesses

Abstract

Spacecraft need high-precision attitude control according to control instructions when it is in space. Aiming to design an attitude controller for the spacecraft system with multiple rotating components. Firstly, the relative kinematic models are proposed, and attitude dynamics equation of spacecraft which is carrying rotating payload is given by using Lagrange method; Secondly, by introducing the functional equation related to the state variable into the nonsingular sliding mode surface, a new control scheme is designed, and it is theoretically demonstrated that the controller can ensure the stability of spacecraft system based on Lyapunov method. Finally, the numerical simulation and comparative analysis of control methods show that control strategy can not only can guarantee rapidity and stability of spacecraft attitude maneuver, but also can avoid the singularity of traditional sliding mode surface and realize high-precision tracking of expected signal and can also to be demonstrated the superior performance in terms of robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. George, V.I., Kamath, B.G., Thirunavukkarasu, I., et al.: Vibration control of flexible spacecraft using adaptive controller. Int. Adv. Sci. Eng. Inf. Technol. 2(1), 2088–5334 (2011). https://doi.org/10.18517/ijaseit.2.1.149

    Article  Google Scholar 

  2. Wang, J., Li, D.X.: Rigid-Flexible Coupling Dynamics and Control of Flexible Spacecraft with Time-Varying Parameters, pp. 185–186. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5097-0

  3. Cui, M.Y., Xu, S.J., Jia, Y.H.: Flexible spacecraft attitude control based on perturbation method analysis. J. Bei**g Univ. Aeronaut. Astronaut. 36(12), 1387–1391 (2010). https://doi.org/10.13700/j.bh.1001-5965.2010.12.003

    Article  Google Scholar 

  4. Liu, M., Xu, S.J., Han, C.: Direct adaptive attitude tracking control of flexible spacecraft based on backstep** method. Acta Aeronautica et Astronautica Sinica 2034–2037 (2012)

    Google Scholar 

  5. Chen, Z.Y., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Autom. Control 54(3), 600–605 (2009). https://doi.org/10.1109/TAC.2008.2008350

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, X.X., Zhang, W.G., Wu, Y., et al.: A different design of robust flight control system based on direct adaptive control. J. Northwest. Polytech. Univ. 26(3), 341–345 (2008). https://doi.org/10.3969/j.issn.1000-2758.2008.03.014

    Article  Google Scholar 

  7. **, E., Sun, Z.W.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008). https://doi.org/10.1016/j.ast.2007.08.001

    Article  MATH  Google Scholar 

  8. **ao, B., Hu, Q.L., Zhang, Y.M.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2011). https://doi.org/10.1109/TCST.2011.2169796

    Article  Google Scholar 

  9. Eshghi, S., Varatharajoo, R.: Nonsingular terminal sliding mode control technique for attitude tracking problem of a small satellite with combined energy and attitude control system (CEACS). Aerosp. Sci. Technol. 76, 14–26 (2018). https://doi.org/10.1016/j.ast.2018.02.006

    Article  Google Scholar 

  10. Lee, K.W., Singh, S.N.: Three-axis adaptive attitude control of spacecraft using solar radiation pressure. Proc. Inst. Mech. Eng. J. Aerosp. Eng. 229(3), 407–422 (2015)

    Google Scholar 

  11. Lee, K.W., Singh, S.N.: A HigherOrder sliding mode three-axis solar pressure satellite attitude control system. J. Aerosp. Eng. 29(1), 04015019 (2016). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000509

    Article  Google Scholar 

  12. Lu, K.F., **a, Y.Q., Zhu, Z., Basinb, M.: Sliding mode attitude tracking of rigid spacecraft with disturbances. J. Frankl. Inst. 349(2), 413–440 (2012). https://doi.org/10.1016/j.jfranklin.2011.07.019

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, J.R., Zhang, W.T., Zeng, X.Y.: Robust controller design for the attitude control of spacecraft with uncertainty. Trans. Bei**g Inst. Technol. 31(10), 1198–1202 (2011). (in Chinese)

    MathSciNet  Google Scholar 

  14. Golestani, M., Esmailzadeh, S., Mobayen, S.: Fixed-time control for high-precision attitude stabilization of flexible spacecraft. Eur. J. Control (2020, to be published). https://doi.org/10.1016/j.ejcon.2020.05.006

  15. Zheng, L., Dong, X.L., Luo, Q., et al.: Robust adaptive sliding mode fault tolerant control for nonlinear system with actuator fault and external disturbance. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/6349510

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, Z.F., Yang, Z.C.: Effects of scan mirror motion on the attitude of three-axis-stabilized geostationary satellite. J. Northwest. Polytech. Univ. 21(1), 87–90 (2003)

    Google Scholar 

  17. Li, Y., Wu, H.Y., Wu, J.: Genetic algorithm PID Self-tuning based on the satellite attitude control. Chin. Space Sci. Technol. 8(4), 66–71 (2007). (in Chinese)

    Google Scholar 

  18. Du, X.P., Hao, G.T., Gao, Y.M.: RBFNN siding mode attitude control method of spacecraft with mobile bodies. Aerosp. Control (05), 61–65 (2012). (in Chinese). https://doi.org/10.3969/j.issn.1006-3242.2012.05.011

  19. Liu, J., Han, C., Zhang, W.: Analysis on disturbance of mobile bodies and compensation control of satellite attitude. Aerosp. Shanghai 23(6), 22–26 (2006). https://doi.org/10.3969/j.issn.1006-1630.2006.06.005

    Article  Google Scholar 

  20. Wu, F., Cao, X.B., Butcher, E., et al.: Dynamics and control of spacecraft with a large misaligned rotational component. Aerosp. Sci. Technol. 87, 207–217 (2019). https://doi.org/10.1016/j.ast.2019.02.029

    Article  Google Scholar 

  21. Zhang, G.W., Wang, F., Chen, J., Li, Y.: Fixed-time sliding mode attitude control of a flexible spacecraft with rotating appendages connected by magnetic bearing. Math. Biosci. Eng. 19(3), 2286–2309 (2022). https://doi.org/10.3934/mbe.2022106

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, G.W., Chen, X.Q., ** sliding mode control for combined spacecraft with nonlinear disturbance observer. In: 2016 UKACC 11th International Conference on Control (CONTROL), pp. 1–6 (2016). https://doi.org/10.1109/CONTROL.2016.7737539

  23. Yu, S.H., Yu, X.H., Shirinzadeh, B., et al.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005). https://doi.org/10.1016/j.automatica.2005.07.001

    Article  MathSciNet  MATH  Google Scholar 

  24. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  25. Zhong, C.X., Li, P., Guo, J., et al.: Robust adaptive attitude Manoeuvre control with finite-time convergence for a flexible spacecraft. Trans. Inst. Meas. Control 40(2), 425–435 (2018). https://doi.org/10.1177/0142331216659337

    Article  Google Scholar 

  26. Miao, Y., Wang, F., Liu, M., et al.: Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage. Aerosp. Sci. Technol. 93, 105312 (2019). https://doi.org/10.1016/j.ast.2019.105312

Download references

Funding

This work is supported by the Science Center Program of National Natural Science Foundation of China (62188101), the National Natural Science Foundation of China (61833009,61690212,51875119,11972130), the Heilongjiang Touyan Team, and the Guangdong Major Project of Basic and Applied Basic Research (2019B030302001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, G., Zhai, H., Guo, H., Liu, M. (2023). Sliding Mode Attitude Control of Flexible Spacecraft with Rotational Components. In: Yan, L., Duan, H., Deng, Y. (eds) Advances in Guidance, Navigation and Control. ICGNC 2022. Lecture Notes in Electrical Engineering, vol 845. Springer, Singapore. https://doi.org/10.1007/978-981-19-6613-2_176

Download citation

Publish with us

Policies and ethics

Navigation