Application of Radiative Cooling

  • Chapter
  • First Online:
Infrared Radiative Cooling and Its Applications

Part of the book series: Energy and Environment Research in China ((EERC))

  • 280 Accesses

Abstract

Although many radiation cooling materials have been developed with very attractive spectral properties, there are not many reliable cooling systems available due to another group of challenges outside the material. Due to the low radiation energy density of radiation refrigeration, one of the biggest challenges facing the application of radiation refrigeration is the large-scale system application of this technology in practical applications. For example, the cooling power of power plant cooling system and electronic cooling system needs to reach 100 w/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Yellot, H. Hay, Natural cooling with roof pond and movable insulation. ASHRAE Trans. 1(75), 77–165 (1969)

    Google Scholar 

  2. S.N. Kharrufa, Y. Adil, Roof pond cooling of buildings in hot arid climates. Build. Environ. 43(1), 82–89 (2008)

    Google Scholar 

  3. D.S. Parker, Theoretical evaluation of the nightcool nocturnal radiation cooling concept. Submitted to Us Department of Energy Fsec, 2005

    Google Scholar 

  4. U. Eicker, A. Dalibard, Photovoltaic–thermal collectors for night radiative cooling of buildings. Solar Energy 85(7), 1322–1335 (2011)

    Google Scholar 

  5. W. Lin, Z. Ma, M.I. Sohel et al., Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials. Energy Convers. Manag. 88218–88230 (2014)

    Google Scholar 

  6. M. Fiorentini, P. Cooper, Z. Ma, Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy Build. 94(7), 21–32 (2015)

    Google Scholar 

  7. G. Heidarinejad, M.F. Farahani, S. Delfani, Investigation of a hybrid system of nocturnal radiative cooling and direct evaporative cooling. Build. Environ. 45(6), 1521–1528 (2010)

    Google Scholar 

  8. M.F. Farahani, G. Heidarinejad, S. Delfani, A two-stage system of nocturnal radiative and indirect evaporative cooling for conditions in Tehran. Energy Build. 42(11), 2131–2138 (2010)

    Google Scholar 

  9. N. Chotivisarut, T. Kiatsiriroat, Cooling load reduction of building by seasonal nocturnal cooling water from thermosyphon heat pipe radiator. Int. J. Energy Res. 33(12), 1089–1098 (2010)

    Google Scholar 

  10. S.M. Lu, W.J. Yan, Development and experimental validation of a full-scale solar desiccant enhanced radiative cooling system. Renew. Energy 6(7), 821–827 (1995)

    Google Scholar 

  11. A.H.H. Ali, W.F. Saleh, Desiccant enhanced nocturnal radiative cooling-solar collector system for air comfort application in hot arid areas. Int. J. Therm. Environ. Eng. (2013)

    Google Scholar 

  12. Y. Man, H. Yang, J.D. Spitler et al., Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings. Appl. Energy 88(11), 4160–4171 (2011)

    Google Scholar 

  13. K.T. Zingre, M.P. Wan, S. Tong et al., Modeling of cool roof heat transfer in tropical climate. Renew. Energy 75(March), 210–223 (2015)

    Google Scholar 

  14. S. Hodo-Abalo, M. Banna, B. Zeghmati, Performance analysis of a planted roof as a passive cooling technique in hot-humid tropics. Renew. Energy 39(1), 140–148 (2012)

    Google Scholar 

  15. M. Santamouris, A. Synnefa, T. Karlessi, Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy 85(12), 3085–3102 (2011)

    Google Scholar 

  16. M. Wendy, C. Glenn, B. John, Analysis of cool roof coatings for residential demand side management in tropical Australia. Energies 8(6), 5303–5318 (2015)

    Google Scholar 

  17. A.R. Gentle, J.L.C. Aguilar, G.B. Smith, Optimized cool roofs: integrating albedo and thermal emittance with R-value. Solar Energy Mater Solar Cells 95(12), 3207–3215 (2011)

    Google Scholar 

  18. M. Taleghani, M. Tenpierik, A. Van Den Dobbelsteen et al., Heat mitigation strategies in winter and summer: field measurements in temperate climates. Build. Environ. 81(November), 309–319 (2014)

    Google Scholar 

  19. A.P. Raman, M.A. Anoma, L. Zhu et al., Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014)

    Google Scholar 

  20. M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3(8), 1047–1051 (2015)

    Google Scholar 

  21. R. Levinson, H. Akbari, Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. Energ. Effi. 3(1), 53–109 (2010)

    Google Scholar 

  22. M. Hosseini, H. Akbari, Effect of cool roofs on commercial buildings energy use in cold climates. Energy Build. 114(February), 143–155 (2016)

    Google Scholar 

  23. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Google Scholar 

  24. A. Royne, C.J. Dey, D.R. Mills, Cooling of photovoltaic cells under concentrated illumination: a critical review. Solar Energy Mater. Solar Cells 86(4), 451–483 (2005)

    Google Scholar 

  25. H.G. Teo, P.S. Lee, M.N.A. Hawlader, An active cooling system for photovoltaic modules. Appl. Energy 90(1): 309–315 (2012)

    Google Scholar 

  26. K.A. Moharram, M.S. Abd-Elhady, H.A. Kandil et al., Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Eng. J. 4(4), 869–877 (2013)

    Google Scholar 

  27. A. Akbarzadeh, T. Wadowski, Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Appl. Therm. Eng. 16(1), 81–87 (1996)

    Google Scholar 

  28. Y. Zhang, Y. Du, C. Shum et al., Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate. Sci. Rep. 6, 24972 (2016)

    Google Scholar 

  29. L. Zhu, A. Raman, K.X. Wang et al., Radiative cooling of solar cells. Optica 1(1), 32–38 (2014)

    Google Scholar 

  30. L. Zhu, A.P. Raman, S. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. 201509453 (2015)

    Google Scholar 

  31. W. Li, Y. Shi, K. Chen et al., A comprehensive photonic approach for solar cell cooling. ACS Photonics 4(4), 774–782 (2017)

    Google Scholar 

  32. Saga, T. Advances in crystalline silicon solar cell technology for industrial mass production. Npg Asia Mater. 2(3), 96–102 (2010)

    Google Scholar 

  33. D.D. Smith, P.J. Cousins, A. Masad et al., Sun power's maxeon gen III solar cell: high efficiency and energy yield, 2014

    Google Scholar 

  34. D.H. Neuhaus, A. Münzer, Industrial silicon wafer solar cells. Adv. Opto Electron. 20071-15 (2007)

    Google Scholar 

  35. M.A. Green, K. Emery, Y. Hishikawa et al., Solar cell efficiency tables (version 48). Prog. Photovoltaics: Res. Appl. 24(7), 905–913 (2016)

    Google Scholar 

  36. S. Kurtz, Opportunities and challenges for development of a mature concentrating photovoltaic power industry (revision). Office of Entific & Technical Information Technical Reports 32(7), 737–741 (2012)

    Google Scholar 

  37. P. Benítez, J.C. Miñano, P. Zamora et al., High-performance Fresnel-based photovoltaic concentrator. Opt. Express 18(Suppl 1)(9), A25 (2010)

    Google Scholar 

  38. J.M. Jonza, L.E. Lorimor, S. Venkataramani, Multilayer polymer film with additional coatings or layers (2002)

    Google Scholar 

  39. M.F. Weber, C.A. Stover, L.R. Gilbert et al., Giant birefringent optics in multilayer polymer mirrors. Science 287(5462), 2451–2456 (2000)

    Google Scholar 

  40. D. Beysens, M. Muselli, I. Milimouk et al., Application of passive radiative cooling for dew condensation. Energy 31(13), 2303–2315 (2006)

    Google Scholar 

  41. D. Beysens, The formation of dew. Atmos. Res. (1995)

    Google Scholar 

  42. W.McCabe, J.C. Smith, Unit Operation of Chemical Engineering (McGraw-Hill, New York, 1993)

    Google Scholar 

  43. W.E. Alnaser, A. Barakat, Use of condensed water vapor from the atmosphere for irrigation in Bahrain. Appl. Energy 65(1–4), 3–18 (2000)

    Google Scholar 

  44. D. Beysens, I. Milimouk, V. Nikolayev et al., Using radiative cooling to condense atmospheric vapor: a study to improve water yield. J. Hydrol. 276(1), 1–11 (2003)

    Google Scholar 

  45. Composite desiccant and air-to-water system and method: 8506675[P]. 2013-08-13

    Google Scholar 

  46. O. Clus et al., Comparison of various radiation-cooled dew condensers using computational fluid dynamics. Desalination (2009)

    Google Scholar 

  47. D. Beysens, O. Clus, M. Mileta et al., Collecting dew as a water source on small islands: the dew equipment for water project in Bisevo (Croatia). Energy 32(6), 1032–1037 (2007)

    Google Scholar 

  48. I. Lekouch, K. Lekouch, M. Muselli et al., Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J. Hydrol. s 448–449(none), 60–72 (2012)

    Google Scholar 

  49. O. Clus, P. Ortega, M. Muselli et al., Study of dew water collection in humid tropical Islands. J. Hydrol. 361(1–2), 159–171 (2008)

    Google Scholar 

  50. M. Zeyghami, F. Khalili, Performance improvement of dry cooled advanced concentrating solar power plants using daytime radiative cooling. Energy Convers. Manag. 106(December), 10–20 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, Z., Mu, E. (2022). Application of Radiative Cooling. In: Infrared Radiative Cooling and Its Applications. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-19-6609-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6609-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6608-8

  • Online ISBN: 978-981-19-6609-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation