Coseismic Landslide Susceptibility and Triggering Analyses

  • Chapter
  • First Online:
Coseismic Landslides

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

This chapter reviews the methods used to carry out coseismic landslide susceptibility and slope stability analyses, from the regional- to the site-scale and based on user needs, data requirements and constraints. Earthquake-induced landslide (EIL) triggering metrics (ground shaking) are discussed and linked to landslide severity and other environmental impacts likely to occur at different levels of ground shaking. Six case studies are used to explore the various methods of determining coseismic landslide susceptibility and slope stability analyses, the metrics they produce, the scale of applicability and data requirements. The key developments and challenges of each method are discussed and summarised. One such challenge is that the efficacy of each method is limited by the availability of the input data and/or the ability to derive it, irrespective of the project scale or need. Possibly the largest challenge for experts is the ability to transfer the results from such models into actionable information (e.g. hazard and risk analyses and engineering design) to support science-based decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In mathematics, a hyperplane H is a linear subspace of a vector space V such that the basis of H has cardinality one less than the cardinality of the basis for V. In other words, if V is an n-dimensional vector space than H is an (n − 1)-dimensional subspace. Examples of hyperplanes in 2 dimensions are any straight line through the origin. In 3 dimensions, any plane containing the origin. Source: https://deepai.org/machine-learning-glossary-and-terms/hyperplane.

References

  • Al-Homoud A, Tahtamoni W (2000) Reliability analysis of three-dimensional dynamic slope stability and earthquake-induced permanent displacement. Soil Dyn Earthq Eng 19(2):91–114

    Article  Google Scholar 

  • Arnold L (2016) Seismically-induced rock-slope failure: numerical investigation using the bonded particle model. PhD Thesis, University of Washington, USA. 600 p

    Google Scholar 

  • Ashford SA, Sitar N (2002) Simplified method of evaluating seismic stability of steep slopes. J Geotech Geoenviron Eng 119. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:2(119)

  • Ashford SA, Sitar N, Lysmer J, Deng N (1997) Topographic effects on the seismic response of steep slopes. Bull Seism Soc Am 87:701–709

    Google Scholar 

  • Athanasopoulos-Zekkos A, Seed RB (2013) Simplified methodology for consideration of two-dimensional dynamic response of levees in liquefaction-triggering evaluation. J Geotech Geoenviron Eng 139(11):1911–1922

    Google Scholar 

  • Bazgard A, Davies T, Cundall P (2011) Dynamic analysis of mountain response using PFC3D and FLAC3D. In: Sainsbury D, Hart R, Detournay C, Nelson M (eds) Continuum and distinct element modelling in geomechanics. Itasca, Minneapolis, MN, USA, pp 1–7

    Google Scholar 

  • Benites RA, Haines AJ (1994) Quantification of seismic wavefield amplification by topographic features. Institute of Geological & Nuclear Sciences client report, 343901

    Google Scholar 

  • Biondi G, Cascone E, Maugeri M, Motta E (2000) Pore pressure effect on seismic response of slopes. 12WCEE 2000, pp 1–8

    Google Scholar 

  • Bloom CK, Howell A, Stahl T, Massey C, Singeisen C (2021) The influence of off-fault deformation zones on the near-fault distribution of coseismic landslides. Submitted to Geology (February 2021)

    Google Scholar 

  • Bloom CK, Howell A. Stahl T. Massey CI, Singeisen C (2022) The influence of off-fault deformation zones on the nearfault distribution of coseismic landslides. Geology 50(3):272–277.https://doi.org/10.1130/G49429.1

  • Bourdeau C, Havenith H-B (2008) Site effects modelling applied to the slope affected by the Suusamyr earthquake (Kyrgyzstan, 1992). Eng Geol 97:126–145

    Article  Google Scholar 

  • Bozzano F, Lenti L, Martino S, Paciello A, Scarascia Mugnozza G (2008) Self-excitation process due to local seismic amplification responsible for the reactivation of the Salcito landslide (Italy) on 31 October 2002. J Geophys Res 113:B10312

    Article  Google Scholar 

  • Bray J (2007) Chapter 14: Simplified seismic slope displacement procedures. In: Pitilakes K (ed) Earthquake geotechnical engineering: 4th international conference on earthquake geotechnical engineering-invited lectures. Springer, Dordrecht, The Netherlands, pp 327–353

    Chapter  Google Scholar 

  • Bray JD, Rathje EM (1998) Earthquake-induced displacements of solid-waste landfills. J Geotech Geoenviron Eng 124(3):242–253

    Article  Google Scholar 

  • Bray JD, Travasarou T (2007) Simplified procedure for estimating earthquake-induced deviatoric slope displacements. J Geotech Geoenviron Eng 133(4):381–392

    Article  Google Scholar 

  • Bray JD, Travasarou T (2009) Pseudostatic coefficient for use in simplified seismic slope stability evaluation. J Geotech Geoenviron Eng 135(9):1336–1340

    Article  Google Scholar 

  • Bray J, Travasarou T (2011) Pseudostatic slope stability procedure. In: 5th international conference on earthquake geotechnical engineering, pp 10–13

    Google Scholar 

  • Bray JD, Macedo J (2019) Procedure for estimating shear-induced seismic slope displacement for shallow crustal earthquakes. J Geotech Geoenviron Eng 145(12):04019106

    Article  Google Scholar 

  • Brideau M-A, Massey CI, Carey JM, Kellet RL, Abbott ER, Monteith F, Kupec J (2021a) Geomechanical characterisation and dynamic numerical modelling of two anthropogenic fill slopes. Eng Geol 281(105980). https://doi.org/10.1016/j.enggeo.2020.105980

  • Brideau M-A, Massey CI, Carey JM, Lyndsell B (2021b) Geomechanical characterisation of discontinuous greywacke from the Wellington region based on laboratory testing. NZ J Geol Geophys. https://doi.org/10.1080/00288306.2020.1853181

    Article  Google Scholar 

  • Budimir MEA, Atkinson PM, Lewis HG (2015) A systematic review of landslide probability map** using logistic regression. Landslides 12:419–436. https://doi.org/10.1007/s10346-014-0550-5

    Article  Google Scholar 

  • Carey JM, Massey CI, Lyndsell B, Petley DN (2019) Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress. Earth Surf Dyn 7(3):707–722

    Article  Google Scholar 

  • Chen TC, Lin ML, Hung JJ (2004) Pseudostatic analysis of Tsao-Ling rockslide caused by Chi-Chi earthquake. Eng Geol 71(1–2):31–47

    Article  Google Scholar 

  • Chien Y-C, Tsai C-C (2017) Immediate estimation of yield acceleration for shallow anddeep failures in slope-stability analyses. Int J Geomech 17:04017009

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet J, Fotopoulou S, Catani F, van den Eeckaut, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73(2),209–263

    Google Scholar 

  • Deleo J (1993) Receiver operating characteristic laboratory (ROCLAB): Software for develo** decision strategies that account for uncertainty. In: Proceedings of 2nd international symposium on uncertainty modelling and analysis. Computer Society Press, College Park

    Google Scholar 

  • Del Gaudio V, Wasowski J (2011) Advances and problems in understanding the seismic response of potentially unstable slopes. Eng Geol 122:73–83. https://doi.org/10.1016/j.enggeo.2010.9.007

  • de Vilder SJ, Massey CI (2020) Guidelines for natural hazard risk analysis on public conservation lands and waters—Part 4: a commentary on analyzing landslide risk to point and linear sites. Lower Hutt (NZ): GNS Science. 64 p. Consultancy Report 2020/53

    Google Scholar 

  • Dey R, Hawlader B, Phillips R, Soga K (2016) Modeling of large-deformation behaviour of marine sensitive clays and its application to submarine slope stability analysis. Can Geotech J 53(7):1138–1155

    Article  Google Scholar 

  • Dowrick DJ, Hancox GT, Perrin ND, Dellow GD (2008) The Modified Mercalli intensity scale: revisions arising from New Zealand experience. Bull NZ Soc Earthq Eng 41(3):193–205. https://doi.org/10.5459/bnzsee.41.3.193-205

    Article  Google Scholar 

  • Elmo D, Stead D (2021) The role of behavioural factors and cognitive biases in rock engineering. In: Rock Mechanics and Rock Engineering, pp 1–20

    Google Scholar 

  • Elmo D, Rogers S, Stead D, Eberhardt E (2014) Discrete Fracture Network approach to characterise rock mass fragmentation and implications for geomechanical upscaling. Min Technol 123(3):149–161

    Article  Google Scholar 

  • Elmo D, Yang B, Stead D, Rogers S (2021) A discrete fracture network approach to rock mass classification. In: International conference of the international association for computer methods and advances in geomechanics. Springer, Cham, pp 854–861

    Google Scholar 

  • EN1998–5. (2004) Eurocode 8: Design of structures for earthquake resistance Part5: Foundations, retaining structures and geotechnical aspects. https://www.phd.eng.br/wp-content/uploads/2014/11/en.1998.5.2004.pdf

  • Exadaktylos G, Stavropoulou M (2008) A specific upscaling theory of rock mass parameters exhibiting spatial variability: analytical relations and computational scheme. Int J Rock Mech Min Sci 45(7):1102–1125

    Article  Google Scholar 

  • Fan X, Scaringi H, Korup O, West JA, Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE, Zhang L, Evans SG, Xu C, Li G, Pei X, Xu Q, Huang R (2019) Earthquake‐induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57(2):421–503.https://doi.org/10.1029/2018RG000626

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Geli L, Bard P-Y, Jullien B (1988) The effect of topography on earthquake ground motion: A review and new results. Bull Seismol Soc Am 78(1):42–63

    Article  Google Scholar 

  • Geomechanica (2021) Irazu. Geomechanica, Toronto, ON, Canada

    Google Scholar 

  • Geo-Slope (2012) SLOPE/W. GEOSLOPE, Calgary, AB, Canada

    Google Scholar 

  • Geo-Slope (2014) QUAKE/W. GEOSLOPE, Calgary, AB, Canada

    Google Scholar 

  • Gischig VS, Eberhardt E, Moore JR, Hungr O (2015) On the seismic response of deep-seated rock slope instabilities—Insights from numerical modelling. Eng Geol 193(2015):1–18. https://doi.org/10.1016/j.enggeo.2015.04.003

    Article  Google Scholar 

  • Goded T, Horspool N, Massey C, Kaiser A, Van Dissen R, Litchfield N, Lukovic B, Heron D, Holden C, Hamling I (2021) Shaking intensity maps for 15 moderate-to-large New Zealand earthquakes. Lower Hutt (NZ): GNS Science (GNS Science report; 2020/35). https://doi.org/10.21420/G2CH12

  • Grant A, Wartman J, Abou-Jaoude G (2016) Multimodal method for coseismic landslide hazard assessment. Eng Geol 212:146–160

    Article  Google Scholar 

  • Guajardo C, Elmo D, Rogers S (2020) Numerical investigation on rock strength upscaling using synthetic rock approach. 54th U.S. Rock Mechanics/Geomechanics Symposium

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1):166–184. https://doi.org/10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Hamling I, Hreinsdóttir S, Clark K, Elliott J, Liang C, Fielding E, Litchfield N, Villamore P, Wallace L, Wright TJ et al (2017) Complex multifault rupture during the 2016 MW 7.8 Kaikoura earthquake, New Zealand. Science 356:1–16. https://doi.org/10.1126/science.aam7194

    Article  Google Scholar 

  • Hancox GT, Perrin ND, Dellow GD (2002) Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand. Bull NZ Soc Earthq Eng 35(2):59–95. https://doi.org/10.5459/bnzsee.35.2.59-95

    Article  Google Scholar 

  • Hancox GT, Ries WF, Lukovic B, Parker RN (2014) Landslides and ground damage caused by the MW 7.1 Inangahua earthquake of 24 May 1968 in northwest South Island, New Zealand. GNS Science Report 2014/06

    Google Scholar 

  • Hancox GT, Ries WF, Parker RN, Rosser B (2016) Landslides caused by the MW 7.8 Murchison earthquake of 17 June 1929 in northwest South Island, New Zealand. GNS Science Report 2015/42

    Google Scholar 

  • Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. Int J Rock Mech Mining Sci Geomech Abs 12(3):227–229

    Article  Google Scholar 

  • Hoek E, Brown E (2019) The Hoek-Brown failure criterion and GSI–2018 edition. J Rock Mech Geotech Eng 11(3):445–463

    Article  Google Scholar 

  • Horspool N, Chadwick M, Ristau J, Salichon J, Gerstenberger MC (2015) ShakeMapNZ: Informing post-event decision making. In: Proceedings conference of the New Zealand society for earthquake engineering, Rotorua (April 2015)

    Google Scholar 

  • Hough SE, Altidor JR, Anglade D, Given D, Janvier MG, Maharrey JZ, Meremonte M, Mildor BS, Prepetit C, Yong A (2010) Localized damage caused by topographic amplification during the 2010 M 7.0 Haiti earthquake. Nat Geosci 3(11):778–782

    Google Scholar 

  • Hsieh S-Y, Lee C-T (2011) Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration. Eng Geol 122(1–2):34–42

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Itasca (2008) FLAC. Itasca Consulting Group, Minneapolis, MN, USA

    Google Scholar 

  • Itasca (2011) FLAC3D, PFC3D. Itasca Consulting Group, Minneapolis, MN, USA

    Google Scholar 

  • Itasca (2020) UDEC v. 7.0. Itasca Consulting Group, Minneapolis, MN, USA

    Google Scholar 

  • Janku L (2017) Quantification of seismic site effects on slopes in Wellington. University of Canterbury PhD thesis. https://doi.org/10.26021/5754

  • Jibson R (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218. https://doi.org/10.1016/j.enggeo.2007.01.013

    Article  Google Scholar 

  • Jibson R (2011) Methods for assessing the stability of slopes during earthquakes—A retrospective. Eng Geol 122(1–2):43–50

    Article  Google Scholar 

  • Jibson R, Harp EL (2016) Extraordinary distance limits of landslides triggered by the 2011 Mineral, Virginia, earthquake. Bull Seismol Soc Am. https://doi.org/10.1785/0120120055

    Article  Google Scholar 

  • Jibson R, Tanyas H (2020) The influence of frequency and duration of seismic ground motion on the size of triggered landslides—A regional view. Eng Geol 273:105671. https://doi.org/10.1016/j.enggeo.2020.105671

    Article  Google Scholar 

  • Kaiser AE, Oth A, Benites RA (2013) Separating source, path and site influences on ground motion during the Canterbury earthquake sequence, using spectral inversion. Same risks, new realities: New Zealand Society for Earthquake Engineering Technical Conference and AGM, April 26–28 2013, Wellington. Paper no. 18:8p

    Google Scholar 

  • Kaiser AE, Holden C, Massey CI (2014) Site amplification, polarity and topographic effects in the Port Hills during the Canterbury earthquake sequence, GNS Science Consultancy Report 2014/121

    Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421

    Google Scholar 

  • Keefer DK, Tannaci NE (1981) Bibliography on landslides, soil liquefaction, and related ground failures in selected historic earthquakes. Open file report 81–572, USGS (May 1981)

    Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. New Jersey, Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Kritikos T, Robinson TT, Davies T (2015) Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach. JGR Earth Surface. 120(4):711–729. https://doi.org/10.1002/2014JF003224

    Article  Google Scholar 

  • Langridge RM, Ries WF, Litchfield NJ, Villamor P, Van Dissen RJ, Barrell DJA, Rattenbury MS, Heron DW, Haubrock S, Townsend DB et al (2016) The New Zealand active faults database. NZ J Geol Geophys 59:86–96. https://doi.org/10.1080/00288306.2015.1112818

    Article  Google Scholar 

  • Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3(4):247–251. https://doi.org/10.1038/ngeo776

    Article  Google Scholar 

  • Lombardo L, Mai PM (2018) Presenting logistic regression-based landslide susceptibility results. Eng Geol 244:14–24. https://doi.org/10.1016/j.enggeo.2018.07.019.

  • Makdisi FI, Seed HB (1978) Simplified procedure for estimating dam and embankment earthquake-induced deformations. J Geotech Eng Div 104(7):8449–8867

    Google Scholar 

  • Marinos P, Marinos V, Hoek E (2007) The geological strength index (GSI): a characterization tool for assessing engineering properties of rock masses. In: Mark, Pakalnis, Tuchman (eds) Proceedings international workshop on rock mass classification for underground mining, 9498, pp 87–94

    Google Scholar 

  • Massey CI, Richards L, Della-Pasqua FN, McSaveney MJ, Holden C, Kaiser AE, Archibald GC, Wartman J, Yetton M (2015) Performance of rock slopes during the 2010/11 Canterbury earthquakes (New Zealand), paper no. 902. In: Hassani F (ed) (general chair) Proceedings: the 13th international congress of rock mechanics : ISRM congress 2015 : innovations in applied and theoretical rock mechanics ... May 10–13, 2015. Canadian Institute of Mining Metallurgy and Petroleum, Montreal, Canada [Montreal, Quebec]

    Google Scholar 

  • Massey CI, Abbott E, McSaveney M, Petley DN, Richards L (2016) Earthquake-induced displacement is insignificant in the reactivated Utiku landslide, New Zealand. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and engineered slopes. experience, theory and practice. Associazione Geotecnica Italiana, Rome, Italy, pp. 31–52

    Google Scholar 

  • Massey C, Della Pasqua F, Holden C, Kaiser A, Richards L, Wartman J, McSaveney MJ, Archibald G, Yetton M, Janku L (2017) Rock slope response to strong earthquake shaking. Landslides 14:249–268

    Article  Google Scholar 

  • Massey CI, Townsend DB, Rathje E, Allstadt KE, Lukovic B, Kaneko Y, Bradley B, Wartman J, Jibson RW, Petley DM, Horspool NA, Hamling IJ, Carey JM, Cox SC, Davidson J, Dellow GD, Godt GW, Holden C, Jones KE, Kaiser AE, Little M, Lyndsell BM, McColl S, Morgenstern RM, Rengers FK, Rhoades DA, Rosser BJ, Strong DT, Singeisen C, Villeneuve M (2018) Landslides triggered by the 14 November 2016 Mw 7.8 Kaikoura earthquake, New Zealand. Bull Seismol Soc Am 108(3B):1630–1648. https://doi.org/10.1785/0120170305

  • Massey CI, Townsend DB, Jones KE, Lukovic B, Rhoades DA, Morgenstern R, Rosser BJ, Ries W, Howarth JD, Hamling IJ, Petley DM, Clark M, Wartman J, Litchfield NJ, Olsen M (2020a) Volume characteristics of landslides triggered by the Mw7.8 2016 Kaikoura Earthquake, New Zealand, derived from digital surface difference modelling. J Geophys Res Earth Surf 125(7):e2019JF005163. https://doi.org/10.1029/2019JF005163

  • Massey CI, Townsend DB, Lukovic B, Morgenstern R, Jones KE, Rosser BJ, de Vilder SJ (2020b) Landslides triggered by the 14 November 2016 Mw 7.8 Kaikoura earthquake : an update. Landslides 17(10):2401–2408. https://doi.org/10.1007/s10346-020-01439-x

  • Massey CI, Lukovic B, Huso R, Buxton R (2021) Earthquake-induced landslide forecast tool for New Zealand: Prototype and option assessment. GNS Science, Lower Hutt (NZ). GNS Science report 2018/08. https://doi.org/10.21420/DOI: https://doi.org/10.21420/G2TP9V

  • McSaveney M, Massey C (2017) Inadvertent engineered activation of Utiku Landslide, New Zealand. In: 4th World Landslide Forum. Ljubljana, Slovenia, pp 563–568

    Google Scholar 

  • Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett 275:221–232

    Article  Google Scholar 

  • Monteith F (2020) SLIDE (Wellington): risk remediation approaches for anthropogenically modified slopes in the Wellington region. GNS Science, Lower Hutt, NZ. GNS Science report 2019/51 [209] p. https://doi.org/10.21420/07JP-Q216

  • Moore JR, Gischig VS, Burjanek J, Loew S, Faeh D (2011) Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bull Seismol Soc Am 101(6):3110–3116

    Article  Google Scholar 

  • Moratalla J, Goded T, Gerstenberger M, Canessa S (2021) New ground motion to intensity conversion equations (GMCIEs) for New Zealand. Seismol Res Lett 92(1):448–459

    Article  Google Scholar 

  • Newmark N (1965) Effects of earthquakes on dams and embankments. Geotechnique 15(2):139–160

    Article  Google Scholar 

  • New Zealand Transport Agency (NZTA) (2013) Bridge manual (SM061). Version 3, Amendment 3, October 2018. ISBN/ISSN: 978-0-478-37161-1 (online) | 978-0-478-37162-8 (print)

    Google Scholar 

  • Nowicki Jessee MA, Hanburger MW, Allstadt K, Wald, DJ, Robeson SM, Tanyas H, Nearne M, Thompson E (2018) A Global empirical model for near‐real‐time assessment of seismically induced landslides. JRG Earth Surf (8):1835–1859. https://doi.org/10.1029/2017JF004494

  • Parker RN, Hancox GT, Petley DN, Massey CI, Densmore AL, Rosser NJ (2015) Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surf Dyn 3:501–525. https://doi.org/10.5194/esurf-3-501-2015

    Article  Google Scholar 

  • Pollock W (2020) A framework for regional scale quantitative landslide risk analysis. University of Washington, Seattle. PhD thesis

    Google Scholar 

  • Pollock W, Grant A, Wartman J, Abou-Jaoude G (2019) Multimodal method for landslide risk analysis. MethodsX 6:827–836. https://doi.org/10.1016/j.mex.2019.04.012

    Article  Google Scholar 

  • Quigley MC, Saunders WSA, Massey CI, Van Dissen RJ, Villamor P, Jack H, Litchfield NJ (2020) The utility of earth science information in post-earthquake land-use decision-making: the 2010-2011 Canterbury earthquake sequence in Aotearoa New Zealand. Nat Hazards Earth Syst Sci, pp 3361–3385.https://doi.org/10.5194/nhess-20-3361-2020

  • Rai M, Rodriguez-Marek A, Yong A (2016) An empirical model to predict topographic effects in strong ground motion using California small- to medium-magnitude earthquake database Manisha. Earthq Spectra 32:1033–1054

    Article  Google Scholar 

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001

    Article  Google Scholar 

  • Rizzitano S, Cascone E, Biondi G (2014) Coupling of topographic and stratigraphic effects on seismic response of slopes through 2D linear and equivalent linear analyses. Soil Dyn Earthq Eng 67:66–84

    Article  Google Scholar 

  • Robinson TR, Rosser NJ, Densmore AL, Williams JG, Kincey ME, Benjamin J, Bell HJA (2017) Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support. Nat Hazards Earth Syst Sci 17(1521–1540):2017. https://doi.org/10.5194/nhess-17-1521-2017

    Article  Google Scholar 

  • Rockfield (2021) Elfen. Rockfield, Swansea Waterfront, UK

    Google Scholar 

  • Rocscience (2010a) RS2. Rocscience Inc, Toronto, ON, Canada

    Google Scholar 

  • Rocscience (2010b) SLIDE. Rocscience Inc, Toronto, ON, Canada

    Google Scholar 

  • Rocscience (2020) RocNews March 2020. URL: https://www.rocscience.com/rocnews/rocnews-march-2020-our-stance-on-covid-19-new-features-in-our-fem-products-and-a-whole-lot-more. Last accessed: 07 Oct, 2020

  • Saygili G, Rathje E (2008) Empirical predictive models for earthquake-induced sliding displacements of slopes. Geotech. Geoenviron. Eng. 134(6):790–803. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(790)

    Article  Google Scholar 

  • Sepulveda SA, Murphy W, Petley DN (2005) Topographic controls on coseismic rock slides during the 1999 Chi-Chi earthquake, Taiwan. Q J Eng Geol Hydrogeol 38:189–196. https://doi.org/10.1144/1470-9236/04-062

    Article  Google Scholar 

  • Siddiqqi J, Atkinson GM (2002) Ground-motion amplification at rock sites across Canada as determined from the horizontal-to-vertical component ratio. Bull Seismol Soc Am 92:877–884

    Article  Google Scholar 

  • Standards New Zealand (2004) Structural design actions part 5 earthquake actions. New Zealand Standard

    Google Scholar 

  • Strenk P, Wartman J (2011) Uncertainty in seismic slope deformation model predictions. Eng Geol 122(1–2):61–72

    Article  Google Scholar 

  • Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(1–2):1–19

    Article  Google Scholar 

  • Tanyaş H, van Westen CJ, Allstadt KE, Anna Nowicki Jessee M, Görüm T, Jibson RW, Godt JW, Sato HP, Schmitt RG, Marc O et al (2017) Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J Geophys Res Earth Surf 122(10):1991–2015. https://doi.org/10.1002/2017jf004236

    Article  Google Scholar 

  • USGS (2021) https://earthquake.usgs.gov/data/ground-failure/background.php. Last accessed 21 Feb, 2021

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Von Ruette J, Papritz A, Lehmann P, Rickli C, Or D (2011) Spatial statistical modelling of shallow landslides-validating predictions for different landslide inventories and rainfall events. Geomorphology 133:11–22

    Article  Google Scholar 

  • Wasowski J, Keefer DK, Lee C-T (2011) Toward the next generation of research on earthquake-induced landslides: Current issues and future challenges. Eng Geol 122(1–2):1–8. ISSN 0013-7952. https://doi.org/10.1016/j.enggeo.2011.06.001

  • Wilson RC, Keefer DK (1985) Predicting areal limits of earthquake induced landsliding. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles region: an earth-science perspective, U.S. Geological Survey Professional Paper 1360, pp 316–345

    Google Scholar 

  • Yang B, Mitelman A, Elmo D, Stead D (2021) Why the future of rock mass classification systems requires revisiting their empirical past. Q J Eng Geol Hydrogeol

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the JTC-1 for facilitating this paper. We would also like to thank the New Zealand governments Strategic Science Investment Fund and their Endeavour Fund (via the Earthquake-induced landscape dynamic programme) and the GeoNet project, which funded this research. We would like to thank D Rhoades, C Mueller, K Leith and P Glassey (GNS Science) for reviewing previous drafts of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Massey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massey, C., Wolter, A., Huso, R., Lukovic, B., Brideau, MA. (2022). Coseismic Landslide Susceptibility and Triggering Analyses. In: Towhata, I., Wang, G., Xu, Q., Massey, C. (eds) Coseismic Landslides. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-19-6597-5_18

Download citation

Publish with us

Policies and ethics

Navigation