Potential Technologies for Advanced Generation Biofuels from Waste Biomass

  • Chapter
  • First Online:
Agroindustrial Waste for Green Fuel Application

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Biofuels are quickly emerging as a way to “modernize” the use of biomass, enhance access to renewable liquid fuels and help cope with energy expenses, global warming, and security issues linked with fossil fuels. The review offers details on biofuel conversion technologies and understands the limits of “first-generation” biofuels and provides meaningful accounts on “second-generation,” biofuels that abolish direct competition between food and fuel associated with most first-generation biofuels. However, these systems demand a greater level of sophistication, investments per production unit, and more extensive facilities than first-generation biofuels. The transgenic production of cellulases from plants is being undertaken to increase the efficiency and production of both enzymes and lignocellulose degradation. The convergence of developments in biological sciences, including biotechnology, carbon capture, and storage and state-of-the-art bioconversion approaches enables the idea of a “fourth-generation” biofuels and bioenergy systems to be developed. Fourth-generation biofuels are thought to help reduce greenhouse gas (GHG) emissions more efficiently than other biofuels by being more carbon-neutral or even carbon-negative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agrell J, Birgersson H, Boutonnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106(1):249–257

    Article  CAS  Google Scholar 

  • Alalwan HA, Alminshid AH, Aljaafari HA (2019) Promising evolution of biofuel generations. Subject review. Renew Energy Focus 28:127–139

    Article  Google Scholar 

  • Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev 14:2852–2862

    Article  CAS  Google Scholar 

  • Alhassan Y, Kumar N, Bugaje IM (2016) Hydrothermal liquefaction of de-oiled Jatropha curcas cake using deep eutectic solvents (DESs) as catalysts and co-solvents. Bioresour Technol 199:375–381. https://doi.org/10.1016/j.biortech.2015.07.116

    Article  CAS  Google Scholar 

  • Amaretti A, Raimondi S, Ross M (2010) Production of single cell oils from glycerol by oleaginous yeasts. J Biotechnol 150:389–399

    Article  Google Scholar 

  • Amiguna B, Gorgens J, Knoetze H (2010) Biomethanol production from gasification of non-woody plant in South Africa: optimum scale and economic performance. Energ Policy 38(1):312–322

    Article  Google Scholar 

  • Anderson RB (1984) The Fischer-Tropsch synthesis. Academic, New York

    Google Scholar 

  • Anonymous (2006) Brazil leading world in effort to boost use of ethanol, CNN

    Google Scholar 

  • Anonymous (2020a) Ethanol Information India, Ethanol in India—Information and useful links

    Google Scholar 

  • Anonymous (2020b) Global biodiesel production by country-statista. https://www.statista.com/. Accessed 13 May 2020

  • Anonymous (2020c) Biomethanol. http://www.refuel.eu/biofuels/biomethanol/. Accessed 14 Jan 2020

  • Arancon RAD, Lin CSK, Chan KM, Kwan TH, Luque R (2013) Advances on waste valorization: new horizons for a more sustainable society. Energy Sci Eng 1(2):53–71

    Article  Google Scholar 

  • Baeyens J, Zhang H, Nie J, Appels L, Dewil R, Ansart R, Deng Y (2020) Reviewing the potential of bio-hydrogen production by fermentation. Renew Sustain Energy Rev 131:110023

    Article  CAS  Google Scholar 

  • Balat M (2006) Biomass energy and biochemical conversion processing for fuels and chemicals. Energy Sources A: Recovery Util Environ Eff 28(6):517–550

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Biogas as renewable energy source- A review. Energy Sources A: Recovery Util Environ Eff 31(14):1280–1293

    Article  CAS  Google Scholar 

  • Bernstad A, la Cour Jansen J (2012) Separate collection of household food waste for anaerobic degradation–Comparison of different techniques from a systems perspective. Waste Manag 32(5):806–815

    Article  CAS  Google Scholar 

  • Bet-Moushoul E, Farhadi K, Mansourpanah Y, Molaie R, Forough M, Nikbakht AM (2016) Development of novel ag/bauxite nanocomposite as a heterogeneous catalyst for biodiesel production. Renew Energy 92:12–21. https://doi.org/10.1016/j.renene.2016.01.070

    Article  CAS  Google Scholar 

  • Bharadwaj V, Tongia R, Arunachalam VS (2007) Sco** technology options for India’s oil security: part I—ethanol for petrol. Curr Sci 92(8):156–189

    Google Scholar 

  • BijSon Innovation Pvt. Ltd. Jaipur (2020). http://www.bijson.com/. Accessed 21 Apr 2021

  • Biopact (2007) Scientists develop low-lignin eucalyptus trees that store more CO2, provide more688 cellulose for biofuels

    Google Scholar 

  • Boerrigter H, Calis HP, Slort DJ, Bodenstaff H, Kaandorp AJ, den Uil H, Rabou PLM (2004) Gas cleaning for integrated biomass gasification (BG) and Fischer-Tropsch (FT) systems, ECN, Petten, the Netherlands, ECN-report number ECN-C-04-056, p 59

    Google Scholar 

  • Boscagli C, Tomasi Morgano M, Raffelt K, Leibold H, Grunwaldt JD (2018) Influence of feedstock, catalyst, pyrolysis and hydrotreatment temperature on the composition of upgraded oils from intermediate pyrolysis. Biomass Bioenergy 116:236–248

    Article  CAS  Google Scholar 

  • Bosmans A, Vanderreydt I, Geysen D, Helsen L (2013) The crucial role of waste-to-energy technologies in enhanced landfill mining: a technology review. J Clean Prod 55:10–23

    Article  Google Scholar 

  • Britt Envirotech, Pvt. Ltd. Tamilnadu (2020). http://brittenvirotech.com/commercial-biogas-plant.html. Accessed 21 Apr 2021

  • B-Sustain Energy Projects Pvt. Ltd. Chennai (2020). http://www.bsustain.in/commercial.html. Accessed 21 Apr 2021

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360

    Article  CAS  Google Scholar 

  • Cavalett O, Slettmo SN, Cherubini F (2018) Energy and environmental aspects of using eucalyptus from Brazil for energy and transportation services in Europe. Sustanilibility 10:4068. https://doi.org/10.3390/su10114068

    Article  CAS  Google Scholar 

  • Chatzikonstantinou D, Tremouli A, Papadopoulou K, Kanellos G, Lampropoulos I, Lyberatos G (2018) Bioelectricity production from fermentable household waste in a dual-chamber microbial fuel cell. Waste Manag Res 36:0734242X1879693. https://doi.org/10.1177/0734242X18796935

    Article  Google Scholar 

  • Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N Biotechnol 28:362

    Article  CAS  Google Scholar 

  • Chen CY, Yang MH, Yeh KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrog Energy 33:4755–4762. https://doi.org/10.1016/j.ijhydene.2008.06.055

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chiu HY, Pai TY, Liu MH, Chang CA, Lo FC, Chang TC, Lo HM, Chiang CF, Chao KP, Lo WY, Lo SW (2016) Electricity production from municipal solid waste using microbial fuel cells. Waste Manag Res 34:619–629. https://doi.org/10.1177/0734242X16649681

    Article  CAS  Google Scholar 

  • Cho DW, Tsang DCW, Kim S, Kwon EE, Kwon G, Song H (2018) Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst. Bioresour Technol 270:346–351. https://doi.org/10.1016/j.biortech.2018.09.046

    Article  CAS  Google Scholar 

  • Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22(1):1–8

    Article  CAS  Google Scholar 

  • Couto EA, Pinto F, Varela F, Reis A, Costa P, Calijuri ML (2018) Hydrothermal liquefaction of biomass produced from domestic sewage treatment in high-rate ponds. Renew Energy 2018(118):644–653. https://doi.org/10.1016/j.renene.2017.11.041

    Article  CAS  Google Scholar 

  • Davis BH (2002) Overview of reactors for liquid phase Fischer-Tropsch synthesis. Catal Today 71:249–300

    Article  CAS  Google Scholar 

  • Davis BH (2005) Fischer–Tropsch synthesis: Overview of reactor development and future potentialities. Topics Catalysis 32:143–168

    Article  CAS  Google Scholar 

  • De Corato U, De Bari I, Viola E, Pugliese M (2018) Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: a review. Renew Sustain Energy Rev 88:326–346

    Article  Google Scholar 

  • Demain A, Newcomb M, Wu JD (2005) Cellulase, Clostridia, and Ethanol. Microbiol Mol Biol Rev 69(1):124–154

    Article  CAS  Google Scholar 

  • Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646

    Article  CAS  Google Scholar 

  • Demirbas MF (2008) Hydrogen production from carbonaceous solid wastes by steam reforming. Energy Sources A: Recovery Util Environ Eff 30:924–931

    Article  CAS  Google Scholar 

  • Den Haan D, Rose S, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94

    Article  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Dry Mark E (2001) High quality diesel via the Fischer-Tropsch process—a review. J Chem Technol Biotechnol 77:43–50

    Google Scholar 

  • Ebrahimpour A, Rahman RNZRA, Ch’ng DHE, Basri M, Salleh AB (2008) A modelling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol 8:96. https://doi.org/10.1186/1472-6750-8-96

    Article  CAS  Google Scholar 

  • Elbahloul Y, Steinbüchel A (2010) Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microbiol 76:4560–4565

    Article  CAS  Google Scholar 

  • El-Dalatony MM, Kurade MB, Abou-Shanab RAI, Kim H, Salama ES, Jeon BH (2016) Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour Technol 219:98–105. https://doi.org/10.1016/j.biortech.2016.07.113

    Article  CAS  Google Scholar 

  • Emerald Enterprises Kerala (2020). http://emeraldenterprisesindia.com/products/. Accessed 21 Apr 2021

  • Envirorise Technologies Llp Bengaluru (2020). http://www.envirorise.com/biogas-biomethanation-plant/. Accessed 21 Apr 2021

  • Farobie O, Matsumura Y (2015) Biodiesel production in supercritical methanol using a novel spiral reactor. Procedia Environ Sci 28:204–213. https://doi.org/10.1016/j.proenv.2015.07.027

    Article  CAS  Google Scholar 

  • Foust T, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion process. Cellulose 16(4):547–565

    Article  CAS  Google Scholar 

  • Frederick WJ, Iisa K, Lundy JR, O’Connor WK, Reis K, Scott AT, Sinquefield SA, Sricharoenchaikul V, Van Vooren CA (1996) Energy and materials recovery from recycled paper sludge. Tappi J 79(6):123–131

    CAS  Google Scholar 

  • Fujita A, Lord M, Hiroko T, Hiroko F, Chen T, Oka C, Misumi Y, Chant J (2004) Rax1, a protein required for the establishment of the bipolar budding pattern in yeast. Gene 327(2):161–169

    Article  CAS  Google Scholar 

  • Gao K, Orr V, Rehmann L (2016) Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction. Bioresour Technol 206:77–85. https://doi.org/10.1016/j.biortech.2016.01.036

    Article  CAS  Google Scholar 

  • Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy 37:16951–16961. https://doi.org/10.1016/j.ijhydene.2012.08.103

    Article  CAS  Google Scholar 

  • Goldemberg J, Johansson TB, Reddy AKN, Williams RH (2004) A global clean cooking fuel initiative. Energy Sustain Dev 8(3):5–12

    Article  Google Scholar 

  • Government of India Planning Commission (2005) Report of the Committee on Development of Bio-Fuel

    Google Scholar 

  • Gray D, Salerno S, Tomlinson G (2004) Potential application of coal-derived fuel gases for the glass industry—a sco** analysis. DOE Contract No. DE-AM26-99FT40465

    Google Scholar 

  • Green Brick Eco Solutions Pvt. Ltd (2020). http://gbes.in/aboutus/company/. Accessed 21 Apr 2021

  • Griffith D (2002) DME interchangeability with LPG—a theoretical study. Fourth meeting of the International DME Association, Lyngby, Denmark, 29–30 April 2002

    Google Scholar 

  • Hamelinck CN, Faaij AP (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111:1–22

    Article  CAS  Google Scholar 

  • Hamzah MAF, Jahim JM, Abdul PM, Asis AJ (2019) Investigation of temperature effect on start-up operation from anaerobic digestion of acidified palm oil mill effluent. Energies 9:2473. https://doi.org/10.3390/en12132473

    Article  CAS  Google Scholar 

  • Hansen JB, Voss B, Joensen F, Sigurdardottir ID (1995) Large-scale manufacture of dimethyl ether—a new alternative diesel fuel from natural gas. SAE Paper 950063

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Houghton J, Seatherwas S, Ferrell J (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. United States Department of Energy. http://www.ethanolindia.net. Accessed 4 June 2020

  • Hwang J-H, Kabra AN, Ji M-K, Choi J, El-Dalatony MM, Jeon BH (2016) Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Res 17:14–20. https://doi.org/10.1016/j.algal.2016.03.029

    Article  Google Scholar 

  • Indian Mart InterMESH Ltd. Noida (2020). https://dir.indiamart.com/search.mpss=biogas+plant&src. Accessed 21 Apr 2021

  • International Energy Agency (2006) Chapter 15. Energy for cooking in develo** countries. World Energy Outlook, Paris

    Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  Google Scholar 

  • Izenson MJ (2007) Inventions, patents and patent applications. https://patents.justia.com/inventor/michael-g-izenson. Accessed 12 Feb 2020

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326

    Article  CAS  Google Scholar 

  • Kalscheuer R, Luftmann H, Steinbüchel A (2004) Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. Appl Environ Microbiol 70(12):7119–7125

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  • Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72(6):1136–1143

    Article  CAS  Google Scholar 

  • Kavlov B, Peteves SD (2005) Status and perspectives of biomass-to-liquid fuels in the European Union, European Commision—Joint Research Center. http://www.senternovem.nl/mmfiles/Status_perspectives_biofuels_EU_2005_tcm24152475.pdf. Accessed 13 Mar 2020

  • Kulkarni M, Gopinath R, Meher LC, Dalai AK (2006) Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem 8:1056–1062

    Article  CAS  Google Scholar 

  • Lee S, Speight JG, Loyalka SK (2007) Handbook of alternative fuel technologies. CRC Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Liu L, Huang Y, Cao J, Liu C, Dong L, Xu L, Zha J (2018) Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier. Sci Total Environ 626:423–433

    Article  CAS  Google Scholar 

  • López Barreiro D, Riede S, Hornung U, Kruse A, Prins W (2015) Hydrothermal liquefaction of microalgae: effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Res 12:206–212. https://doi.org/10.1016/j.algal.2015.08.025

    Article  Google Scholar 

  • Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N (2007) Bio-syngas production from biomass catalytic gasification. Energy Convers Manag 48(4):1132–1139

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride J, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  Google Scholar 

  • Lynd L, Greene N, Dale B, Laser M, Lashof D, Wang M, Wyman C (2006) Energy returns on ethanol production. Science 312:746–1748

    Google Scholar 

  • Macedo IC (2007) Etanol de Cana de Acucar no Brasil. Presentation at the Seminar on Technologies for future ethanol production in India. Instituto Technologia Promon, Sao Paulo

    Google Scholar 

  • Mahapatra MK, Kumar A (2017) A short review on biobutanol, a second generation biofuel production from lignocellulosic biomass. J Clean Energy Technol 5:27–30

    Article  CAS  Google Scholar 

  • Manzanera M (2011) Biofuels from oily biomass. In: Muradov M, Veziroghu N (eds) Carbon-neutral fuels and energy carriers. CRC, Taylor & Francis Group, Orlando, pp 635–663, isbn:978-143-9818-57 2

    Google Scholar 

  • Marchiona M (2002) LPG/DME mixtures: domestic and automotive uses. Fourth meeting of the International DME Association, Lyngby, Denmark, 29–30 April

    Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez Suárez A, Río Andrade JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005:195–204

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mattias R (2005) Biomass-to-liquids Fuels (BtL)—made by Choren Process—Environmental impacts and latest development. http://www.choren.com/dl.php?file=Btl-Made_by_Choren_Process_Environmental_Impact_and_Latest_Developments.pdf. Accessed 1 Mar 2020

  • May M (2003) Development and demonstration of Fischer-Tropsch fueled heavy-duty vehicles with control technologies for reduced diesel exhaust emissions. In: 9th diesel engine emissions reduction conference, Newport

    Google Scholar 

  • Mazzoni L, Ahmed R, Janajreh I (2017) Plasma gasification of two waste streams: municipal solid waste and hazardous waste from the oil and gas industry. Energy Procedia 105:4159–4166. https://doi.org/10.1016/j.egypro.2017.03.882

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    Article  CAS  Google Scholar 

  • Meher LC, Vidyasagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  • Mendez A, Fidalgo JM, Guerrero F, Gasco G (2009) Characterization and pyrolysis behaviour of different paper mill waste materials. J Anal Appl Pyrolysis 86(1):66–73

    Article  CAS  Google Scholar 

  • Merdun H, Sezgin İV (2018) Products distribution of catalytic co-pyrolysis of greenhouse vegetable wastes and coal. Energy 162:953–963

    Article  CAS  Google Scholar 

  • Mohan D, Pitman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–849

    Article  CAS  Google Scholar 

  • Molina-Grima E, Acién-Fernández FG, García-Camacho F, Camacho-Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  • Mortensen AW (2019) Nordic GTL – a pre-feasibility study on sustainable aviation fuel from biogas, hydrogen and CO2. https://www.nordicenergy.org/wp-content/uploads/2019/10/Nordic-aviation-fuel-production-28-10-2019-final.pdf

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  CAS  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microb Mol Biol Rev 72(3):379–412

    Article  CAS  Google Scholar 

  • Ngo SI, Nguyen TDB, Il LY, Song BH, Do LU, Choi YT, Song JH (2011) Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model. Appl Energy 88:5208–5220. https://doi.org/10.1016/j.apenergy.2011.07.046

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progr Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Olaganathan R, Ko Qui Shen F, Jun Shen L (2014) Potential and technological advancement of biofuels. Int J Adv Sci Techn Res 4(4):12

    Google Scholar 

  • Panagiotou G, Villas-Bôas SG, Christakopoulos P, Neilsen J, Olsson L (2005) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115(4):425–434

    Article  CAS  Google Scholar 

  • Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672. https://doi.org/10.1016/j.cej.2015.05.065

    Article  CAS  Google Scholar 

  • Pattiya A, Suttibak S (2017) Fast pyrolysis of sugarcane residues in a fluidised bed reactor with a hot vapour filter. J Energy Inst 90:110–119

    Article  CAS  Google Scholar 

  • Perfect biogas and Management Pvt. Ltd. New Delhi (2020). https://www.perfectbiowastepower.in/product-and-services.htm. Accessed 21 Apr 2021

  • Pfaltzgraff LA, Cooper EC, Budarin V, Clark JH (2013) Food waste biomass: a resource for high-value chemicals. Green Chem 15(2):307–314

    Article  CAS  Google Scholar 

  • Quantum Green Pvt. Ltd. Bengaluru (2020). https://www.quantumgreen.in/. Accessed 21 Apr 2021

  • Rahman QM, Zhang B, Wang L, Joseph G, Shahbazi A (2019) A combined fermentation and ethanol-assisted liquefaction process to produce biofuel from Nannochloropsis sp. Fuel 238:159–165. https://doi.org/10.1016/j.fuel.2018.10.116

    Article  CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  CAS  Google Scholar 

  • Rensfelt E (2005) State of the art of biomass gasification and pyrolysis technology. In: Synbios, the syngas route to automotive biofuels, conference held from 18–20 May 2005, Stockholm, Sweden

    Google Scholar 

  • Richmond A (2010) Handbook of microalgal culture. Blackwell Science, Ames. isbn 0-632-05953-2

    Google Scholar 

  • Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJ, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42(12):8450–8461

    Article  CAS  Google Scholar 

  • Rowlands WN, Masters A, Maschmeyer T (2008) The biorefinery-challenges, opportunities, and an Australian perspective. Bull Sci Technol Soc 28(2):149–158

    Article  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schirmer WN, Jucá JFT, Schuler ARP, Holanda S, Jesus LL (2014) Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of different ages. Braz J Chem Eng 31(2):373. https://doi.org/10.1590/0104-6632.20140312s00002468

    Article  Google Scholar 

  • Schulz H (1999) Short history and present trends of FT synthesis. Appl Catal A: Gen 186:1–16

    Article  CAS  Google Scholar 

  • Sengmee D, Cheirsilp B, Suksaroge TT, Prasertsan P (2017) Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source. Int J Hydrog Energy 42:1970–1976. https://doi.org/10.1016/j.ijhydene.2016.10.089

    Article  CAS  Google Scholar 

  • Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305

    Article  CAS  Google Scholar 

  • Shapouri H, Duffield JA, Graboski MS (1995) Estimating the net energy balance of corn ethanol. US Department of Agriculture, Agricultural Economic Report Number 721

    Google Scholar 

  • Shaw AJ, Hogsett DA, Lynd LR (2009) Identification of the [FeFe]-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J Bacteriol 191:6457–6464

    Article  CAS  Google Scholar 

  • Shieh CJ, Liao HF, Lee CC (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88:103–106

    Article  CAS  Google Scholar 

  • Solé-Bundó M, Carrère H, Garfí M, Ferrer I (2017) Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Res 24:199–206. https://doi.org/10.1016/j.algal.2017.03.025

    Article  Google Scholar 

  • Srirangan K, Akawi L, Young MA, Chou P (2012) Towards sustainable production of clean energy carriers from biomass resources. Appl Energy 100:172–186

    Article  Google Scholar 

  • Steynberg A, Dry Mark E (2004) Fischer-Tropsch Technology, Elsevier BV

    Google Scholar 

  • Stricklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315–319

    Article  Google Scholar 

  • Su YC, Sathyamoorthy S, Chandran K (2019) Bioaugmented methanol production using ammonia oxidizing bacteria in a continuous flow process. Bioresour Technol 279:1011–1007

    Article  Google Scholar 

  • Synod Biosciences Pvt. Ltd. Bengaluru (2020). http://www.synod.in/institutional-community-biogas-plants/. Accessed 21 Apr 2021

  • Takata M, Fukushima K, Kino-Kimata N, Nagao N, Niwa C, Toda T (2012) The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling. Sci Total Environ 432:309–317

    Article  CAS  Google Scholar 

  • Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129–152

    Article  CAS  Google Scholar 

  • Toledano A, Serrano L, Labidi J, Pineda A, Balu AM, Luque R (2013) Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents. ChemCatChem 5(4):977–985

    Article  CAS  Google Scholar 

  • Toribio L, Bernal JL, Nozal MJ, Arnaiz E, Bernal J (2011) Sequential supercritical fluid extraction of lipids. Application to the Obtention of the fatty acid profile of some genetically modified varieties of corn. Food Anal Methods 4:196–202. https://doi.org/10.1007/s12161-010-9157-1

    Article  Google Scholar 

  • UNICA (2020) Sao Paulo Sugarcane Agroindustry Union. http://www.unica.com.br. Accessed 11 June 2020

  • Van der Drift A, Boerrigter H (2005) Synthesis gas from biomass—for fuels and chemicals. http://www.gastechnology.org/webroot/downloads/en/IEA/syngasFrombiomassvanderDrift.pdf. Accessed 17 July 2020

  • Van der Drift A, Boerrigter H, Coda B, Cieplik MK, Hemmes K (2004) Entrained flow gasification of biomass; Ash behaviour, feeding issues, system analyses. Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands, report C–04-039

    Google Scholar 

  • van Zyl WH, Lynd LR, Haan RD, McBride J (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    Google Scholar 

  • Waltermann M, Steinbüchel A (2010) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187(11):3607–3619

    Article  Google Scholar 

  • Weil J, Westgate P, Kohlmann K, Ladisch MR (1994) Cellulose pre-treatments of lignocellulosic substrates. Enzyme Microb Technol 16:1002–1004

    Article  CAS  Google Scholar 

  • **ros C, Christakopoulos P (2009) Enhanced ethanol production from Brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2:4. https://doi.org/10.1186/1754-6834-2-4

    Article  CAS  Google Scholar 

  • Yunus Khan TM, Badruddin IA, Ankalgi RF, Badarudin A, Hungund BS, Ankalgi FR (2018) Biodiesel production by direct transesterification process via sequential use of acid–base catalysis. Arab J Sci Eng 43:5929–5936. https://doi.org/10.1007/s13369-018-3078-5

    Article  CAS  Google Scholar 

  • Zhang YHP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102:7231–7325

    Google Scholar 

  • Zhang B, Zhang LL, Zhang SC, Shi HZ, Cai WM (2005) The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol 26(3):329–340

    Article  Google Scholar 

  • Zhang L, Zhao H, Gan M, ** Y, Gao X, Chen Q, Guan J, Wang Z (2011) Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresour Technol 102(6):4573–4579

    Article  CAS  Google Scholar 

  • Zhang S, Yang X, Zhang H, Chu C, Zheng K, Ju M, Liu L (2019) Liquefaction is the low-temperature cracking of biomass: a review. Molecules 24:2250. https://doi.org/10.3390/molecules24122250

    Article  CAS  Google Scholar 

  • Zinoviev S, Arumugam S, Miertus S (2007) Background paper on biofuel production technologies working document International Centre for Science and High Technology. United Nations Industrial Development Organization

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P., Singla, D., Taggar, M.S., Sarao, L.K. (2023). Potential Technologies for Advanced Generation Biofuels from Waste Biomass. In: Srivastava, N., Verma, B., Mishra, P. (eds) Agroindustrial Waste for Green Fuel Application. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-6230-1_5

Download citation

Publish with us

Policies and ethics

Navigation