Error-Similarity-Based Positioning Error Compensation

  • Chapter
  • First Online:
Error Compensation for Industrial Robots
  • 198 Accesses

Abstract

The kinematic error model is described in Chap. 2, and the robot error compensation using the kinematic calibration is conducted in Chap. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tobler WR. A computer movie simulating urban growth in the Detroit region. Econ Geogr. 1970;46(sup1):234–40.

    Article  Google Scholar 

  2. Shiakolas P, Conrad K, Yih T. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. Int J Model Simul. 2002;22(4):245–54.

    Article  Google Scholar 

  3. Tilmann G, Zoltán S, Martin S. Analogies and correspondences between variograms and covariance functions. Adv Appl Probab. 2001;33(3):617–30.

    Article  MathSciNet  MATH  Google Scholar 

  4. Jian X, Ricardo A, et al. Semivariogram modeling by weighted least squares. Comput Geosci. 1996.

    Google Scholar 

  5. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.

    Article  Google Scholar 

  6. Borm J-H, Meng C-H. Determination of optimal measurement configurations for robot calibration based on observability measure. Int J Robot Res. 1991;10(1):51–63. https://doi.org/10.1177/027836499101000106.

    Article  Google Scholar 

  7. Hillermeier C. Nonlinear multiobjective optimization: a generalized homotopy approach. Birkhaüser Verlag. 2001.

    Google Scholar 

  8. Bechikh S, Kessentini M, Said LB, Ghédira K. Chapter four—preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. In: Hurson AR, editor. Advances in computers. Elsevier; 2015. p. 141–207.

    Google Scholar 

  9. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press; 1992.

    Google Scholar 

  10. Srinivas N, Deb K. Multiobjective function optimization using nondominated sorting genetic algorithms. Evol Comput. 1994;2(3):1301–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhe Liao .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liao, W., Li, B., Tian, W., Li, P. (2023). Error-Similarity-Based Positioning Error Compensation. In: Error Compensation for Industrial Robots. Springer, Singapore. https://doi.org/10.1007/978-981-19-6168-7_4

Download citation

Publish with us

Policies and ethics

Navigation