A Survey of Optimal Design of Antenna (Array) by Evolutionary Computing Methods

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1638))

Included in the following conference series:

  • 584 Accesses

Abstract

To satisfy the increasing requirements of big data transmission, mutual interference and wide band, the optimal design of antenna and antenna array has drawn great interests and attentions of researchers. This paper summarizes and classifies state-of-the-art optimal antenna designs by using evolutionary computing (EC) methods. Antenna designs are classified based on three aspects. First, based on array type, they are divided into single antenna design, linear array design and planar array design. Second, based on the number of optimization objectives, they are divided into single objective, bi-objective, and three objective methods. Third, approaches are divided based on real world scenarios. Furthermore, a benchmark is built for the designs of linear antenna array and planar antenna array. Such benchmark can be used as baseline to assist researchers to verify or create more powerful EC methods. Simulation results show that the benchmark is scalable and reliable for testing the performance of EC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balanis, C.A.: Antenna Theory Analysis and Design, 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

  2. Milligan, T.A.: Modern Antenna Design, 2nd edn. Willey, Hoboken (2005)

    Book  Google Scholar 

  3. Baeck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. CRC Press, Boca Raton (1997)

    Book  MATH  Google Scholar 

  4. Olariu, S., Zomaya, A.Y.: Handbook of Bioinspired Algorithms and Applications. Chapman and Hall/CRC Press, New York (2005)

    Book  MATH  Google Scholar 

  5. Shah, I.U., Durrani, T.S.: Constraint adaptive natural gradient algorithm (CANA) for adaptive array processing. In: 17th European Signal Processing Conference (EUSIPCO 2009), Glasgow, Scotland, pp 884–888 (2009)

    Google Scholar 

  6. Zhang, X., Zhang, X., Wang, L.: Antenna design by an adaptive variable differential artificial bee colony algorithm. IEEE Trans. Magn. 54(3), Article No. 7201704 (2018).

    Google Scholar 

  7. Zhang, X., Zhang, X.: Thinning of antenna array via adaptive memetic particle swarm optimization. EURASIP J. Wirel. Commun. Netw. 2017, Article No. 183 (2017)

    Google Scholar 

  8. Ustun, D., Akdagli, A.: Design of band–notched UWB antenna using a hybrid optimization based on ABC and DE algorithms. AEU Int. J. Electron. Commun. 87, 10–21 (2018)

    Article  Google Scholar 

  9. Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Deng, Z.: Structural design and optimization of large cable–rib tension deployable antenna structure with dynamic constraint. Acta Astronaut. 151, 160–172 (2018)

    Article  Google Scholar 

  10. Gupta, N., Saxena, J., Bhatia, K.S.: Design optimization of CPW-fed microstrip patch antenna using constrained ABFO algorithm. Soft Comput. 22(24), 8301–8315 (2017). https://doi.org/10.1007/s00500-017-2775-4

    Article  Google Scholar 

  11. Kaur, G., Rattan, M., Jain, C.: Design and optimization of PSI slotted fractal antenna using ANN and GA for multiband applications. Wirel. Pers. Commun. 97, 4573–4585 (2017)

    Article  Google Scholar 

  12. Kaur, G., Rattan, M., Jain, C.: Optimization of Swastika slotted fractal antenna using genetic algorithm and bat algorithm for S-band utilities. Wirel. Pers. Commun. 97(1), 95–107 (2017). https://doi.org/10.1007/s11277-017-4495-6

    Article  Google Scholar 

  13. Manoochehri, O., Salari, M.A., Darvazehban, A.: A short broadband monopole antenna. AEU Int. J. Electron. Commun. 83, 240–244 (2018)

    Article  Google Scholar 

  14. FallahHoseini, M., Rafeh, R.: Proposing a centralized algorithm to minimize message broadcasting energy in wireless sensor networks using directional antennas. Appl. Soft Comput. 64, 272–281 (2018)

    Article  Google Scholar 

  15. Wang, C., Chen, Y., Yang, S.: Application of characteristic mode theory in hf band aircraft-integrated multiantenna system designs. IEEE Trans. Antennas Propag. 67(1), 513–521 (2019)

    Article  Google Scholar 

  16. An, S., Yang, S., Ren, Z.: Incorporating light beam search in a vector normal boundary intersection method for linear antenna array optimization. IEEE Trans. Magn. 53(6), Article No. 7001304 (2017)

    Google Scholar 

  17. Shandilya, M., Pawar, S.S., Chaurasia, V.: Design and optimization of a non-cross feed printed log periodic dipole array antenna using particle swarm optimization. AEU Int. J. Electron. Commun. 93, 172–181 (2018)

    Article  Google Scholar 

  18. Ram, G., Mandal, D., Ghoshal, S.P., Kar, R.: Null placement in time-modulated linear antenna arrays of dipole element. IETE J. Res. 63(3), 403–412 (2017)

    Article  Google Scholar 

  19. Liu, J., Ma, D., Ma, T., Zhang, W.: Ecosystem particle swarm optimization. Soft. Comput. 21(7), 1667–1691 (2016). https://doi.org/10.1007/s00500-016-2111-4

    Article  Google Scholar 

  20. Das, A., Mandal, D., Ghoshal, S.P., Kar, R.: An efficient side lobe reduction technique considering mutual coupling effect in linear array antenna using BAT algorithm. Swarm Evol. Comput. 35, 26–40 (2017)

    Article  Google Scholar 

  21. Chatterjee, A., Mondal, T., Patanvariya, D.G., Jagannath, R.P.K.: Design of a wide bandwidth and high efficiency circularly polarized microstrip patch antenna using coaxial feeding technique. AEU Int. J. Electron. Commun. 83, 549–557 (2018)

    Article  Google Scholar 

  22. Chakravarthy, V.V.S.S.S., Chowdary, P.S.R., Panda, G., Anguera, J., Andújar, A., Majhi, B.: On the linear antenna array synthesis techniques for sum and difference patterns using flower pollination algorithm. Arab. J. Sci. Eng. 43(8), 3965–3977 (2017). https://doi.org/10.1007/s13369-017-2750-5

    Article  Google Scholar 

  23. Singh, U., Salgotra, R.: Synthesis of linear antenna array using flower pollination algorithm. Neural Comput. Appl. 29(2), 435–445 (2016). https://doi.org/10.1007/s00521-016-2457-7

    Article  Google Scholar 

  24. Zaharis, Z.D., Gravas, I.P., Lazaridis, P.I., Glover, I.A., Antonopoulos, C.S., Xenos, T.D.: Optimal LTE-protected LPDA design for DVB-T reception using particle swarm optimization with velocity mutation. IEEE Trans. Antenna Propag. 66(8), 3926–3935 (2018)

    Article  Google Scholar 

  25. Cui, C.-Y., Jiao, Y.-C., Zhang, L.: Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming. IEEE Antennas Wirel. Propag. Lett. 16, 2444–2448 (2017)

    Article  Google Scholar 

  26. Wang, L., Zhang, X., Zhang, X.: Antenna array design by artificial bee colony algorithm with similarity induced search method. IEEE Trans. Magn. 55(6), Article No. 7201904 (2019)

    Google Scholar 

  27. Das, A., Mandal, D., Ghoshal, S.P., Kar, R.: Concentric circular antenna array synthesis for side lobe suppression using moth flame optimization. AEU Int. J. Electron. Commun. 86, 177–184 (2018)

    Article  Google Scholar 

  28. Bouchekara, H.R.E.-H., Orlandi, A., Al-Qdah, M., de Paulis, F.: Most valuable player algorithm for circular antenna arrays optimization to maximum sidelobe levels reduction. IEEE Trans. Electromagn. Compat. 60(6), 1655–1661 (2018)

    Article  Google Scholar 

  29. Sun, G., Liu, Y., Liang, S., Wang, A., Zhang, Y.: Beam pattern design of circular antenna array via efficient biogeography-based optimization. AEU Int. J. Electron. Commun. 79, 275–285 (2017)

    Article  Google Scholar 

  30. Ismaiel, A.M., Elsaidy, E., Albagory, Y., Atallah, H.A., Abdel-Rahman, A.B., Sallam, T.: Performance improvement of high altitude platform using concentric circular antenna array based on particle swarm optimization. AEU Int. J. Electron. Commun. 91, 85–90 (2018)

    Article  Google Scholar 

  31. Banerjee, S., Mandal, D.: Array pattern optimization for steerable circular isotropic antenna array using cat swarm optimization algorithm. Wirel. Pers. Commun. 99(3), 1169–1194 (2018). https://doi.org/10.1007/s11277-017-5171-6

    Article  Google Scholar 

  32. Chien, W., Chiu, C.-C., Cheng, Y.-T., Liao, S.-H., Yen, H.-S.: Multi-objective optimization for UWB antenna array by APSO algorithm. Telecommun. Syst. 64(4), 649–660 (2016). https://doi.org/10.1007/s11235-016-0197-8

    Article  Google Scholar 

  33. Banerjee, S., Mandal, D.: Array pattern optimization for a steerable circular isotropic antenna array using the firefly algorithm. J. Comput. Electron. 16(3), 952–976 (2017). https://doi.org/10.1007/s10825-017-1049-9

    Article  Google Scholar 

  34. Bera, R., Mandal, D., Kar, R., Ghoshal, S.P.: Non-uniform single-ring antenna array design using wavelet mutation based novel particle swarm optimization technique. Comput. Electr. Eng. 61, 151–172 (2017)

    Article  Google Scholar 

  35. Sahoo, P.K., Mandal, D.: Swarm intelligence-based optimal design to minimize the sidelobe level of concentric circular antenna array with element failures. IETE J. Res. 64(4), 559–568 (2017)

    Article  Google Scholar 

  36. Soltani, S., Lotfi, P., Murch, R.D.: Design and optimization of multiport pixel antennas. IEEE Trans. Antenna Propag. 66(4), 2049–2054 (2018)

    Article  Google Scholar 

  37. Liu, Q., Qi, S.-S., Yin, Q., Wu, W.: Frequency-scanning dual-beam parallel-plate waveguide continuous transverse stub antenna array with sidelobe suppression. IEEE Antenna Wirel. Propag. Lett. 17(7), 1228–1232 (2018)

    Article  Google Scholar 

  38. Li, X., Luk, K.M., Duan, B.: Multiobjective optimal antenna synthesis for microwave wireless power transmission. IEEE Trans. Antenna Propag. 67(4), 2739–2744 (2019)

    Article  Google Scholar 

  39. Koziel, S., Bekasiewicz, A.: Comprehensive comparison of compact UWB antenna performance by means of multiobjective optimization. IEEE Trans. Antenna Propag. 65(7), 3427–3436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Deb, A., Roy, J.S., Gupta, B.: A differential evolution performance comparison: comparing how various differential evolution algorithms perform in designing microstrip antennas and arrays. IEEE Antennas Propag. Mag. 60(1), 51–61 (2018)

    Article  Google Scholar 

  41. Hu, C., Zeng, S., Jiang, Y., Sun, J., Sun, Y., Gao, S.: A robust technique without additional computational cost in evolutionary antenna optimization. IEEE Trans. Antenna Propag. 67(4), 2252–2259 (2019)

    Article  Google Scholar 

  42. Aldhafeeri, A., Rahmat-Samii, Y.: Brain storm optimization for electromagnetic applications: continuous and discrete. IEEE Trans. Antenna Propag. 67(4), 2710–2722 (2019)

    Article  Google Scholar 

  43. Lu, D., Wang, L., Yang, E., Wang, G.: Design of high-isolation wideband dual-polarized compact MIMO antennas with multiobjective optimization. IEEE Trans. Antenna Propag. 66(3), 1522–1527 (2018)

    Article  Google Scholar 

  44. Medina, Z., Reyna, A., Panduro, M.A., Elizarraras, O.: Dual-Band performance evaluation of time-modulated circular geometry array with microstrip-fed slot antennas. IEEE Access 7, 28625–28634 (2019)

    Article  Google Scholar 

  45. Liu, B., Akinsolu, M.O., Ali, N., Abd-Alhameed, R.: Efficient global optimisation of microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm. IET Microwaves Antennas Propag. 13(2), 149–155 (2019)

    Article  Google Scholar 

  46. Easum, J.A., Nagar, J., Werner, P.L., Werner, D.H.: Efficient multiobjective antenna optimization with tolerance analysis through the use of surrogate models. IEEE Trans. Antenna Propag. 66(12), 6706–6715 (2018)

    Article  Google Scholar 

  47. Dong, J., Qin, W., Wang, M.: Fast multi-objective optimization of multi-parameter antenna structures based on improved BPNN surrogate model. IEEE Access 7, 77692–77701 (2019)

    Article  Google Scholar 

  48. Palanisamy, T.S.C.A., Murugappan, M.: Joint optimisation of ground, feed shapes with material distributive topology of patch in UWB antennas using improved binary particle swarm optimisation. IET Microwaves Antennas Propag. 12(12), 1967–1972 (2018)

    Article  Google Scholar 

  49. Pirinoli, P., Beccaria, M., Massaccesi, A.: MQC10-BBO optimization applied to multi-beam antenna design. In: 13th European Conference on Antennas and Propagation, Krakow, Poland, pp. 1–3. IEEE (2019)

    Google Scholar 

  50. Ding, D., **a, J., Yang, L., Ding, X.: Multiobjective optimization design for electrically large coverage. IEEE Antennas Propag. Mag. 60(1), 27–37 (2018)

    Article  Google Scholar 

  51. Nagar, J., Werner, D.H.: Multiobjective optimization for electromagnetics and optics: an introduction and tutorial based on real-world applications. IEEE Antennas Propag. Mag. 60(6), 58–71 (2018)

    Article  Google Scholar 

  52. Jian, R., Chen, Y., Chen, T.: Multi-Parameters unified-optimization for millimeter wave microstrip antenna based on ICACO. IEEE Access 7, 53012–53017 (2018)

    Article  Google Scholar 

  53. Tang, M.-C., Chen, X., Li, M., Ziolkowski, R.W.: Particle swarm optimized, 3-D-printed, wideband, compact hemispherical antenna. IEEE Antennas Wirel. Propag. Lett. 17(11), 2031–2035 (2018)

    Article  Google Scholar 

  54. Zhang, B., Rahmat-Samii, Y.: Robust optimization with worst case sensitivity analysis applied to array synthesis and antenna designs. IEEE Trans. Antenna Propagat. 66(1), 160–171 (2018)

    Article  Google Scholar 

  55. Smith, J.S., Baginski, M.E.: Thin-wire antenna design using a novel branching scheme and genetic algorithm optimization. IEEE Trans. Antenna Propag. 67(5), 2934–2941 (2019)

    Article  Google Scholar 

  56. Khodier, M.: Comprehensive study of linear antenna array optimisation using the cuckoo search algorithm. IET Microwaves Antennas Propag. 13(9), 1325–1333 (2019)

    Article  Google Scholar 

  57. Gupta, N., Saxena, J., Bhatia, K.S.: Optimized metamaterial-loaded fractal antenna using modified hybrid BF-PSO algorithm. Neural Comput. Appl. 32(11), 7153–7169 (2019). https://doi.org/10.1007/s00521-019-04202-z

    Article  Google Scholar 

  58. Dib, N.: Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search. Neural Comput. Appl. 30(12), 3859–3868 (2017). https://doi.org/10.1007/s00521-017-2971-2

    Article  Google Scholar 

  59. Zhang, X., Lu, D., Zhang, X., Wang, Y.: Antenna array design by a contraction adaptive particle swarm optimization algorithm. EURASIP J. Wirel. Commun. Netw. 2019, Article No. 57 (2019)

    Google Scholar 

  60. Phan, H.D., Ellis, K., Barca, J.C., Dorin, A.: A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms. Neural Comput. Appl. 32(2), 567–588 (2019). https://doi.org/10.1007/s00521-019-04229-2

    Article  Google Scholar 

  61. Wu, Z., Chow, T.W.S.: Neighborhood field for cooperative optimization. Soft Comput. 17(5), 819–834 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported in part by the Supported by the National Key Research and Development Program of China (2022YFE0198900, 2021YFF0500903), and the National Natural Science Foundation of China (52178271, 61901301), and in part by the Tian** Higher Education Creative Team Funds Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Wu, Z. (2022). A Survey of Optimal Design of Antenna (Array) by Evolutionary Computing Methods. In: Zhang, H., et al. Neural Computing for Advanced Applications. NCAA 2022. Communications in Computer and Information Science, vol 1638. Springer, Singapore. https://doi.org/10.1007/978-981-19-6135-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6135-9_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6134-2

  • Online ISBN: 978-981-19-6135-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation