Cadmium, a Nonessential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism

  • Chapter
  • First Online:
Plant Metal and Metalloid Transporters

Abstract

Cadmium (Cd) is a toxic nonessential heavy metal for higher plants, which has a long biological half-life. Based on the fact that Cd is harmful to the environment and plants, and due to the sessile nature of the plants, they need to elevate their protective mechanisms to cope with Cd stress. Due to its high solubility and being easily taken up by the plants using the transporters of various essential elements like iron, zinc, and manganese, it not only interferes with the uptake of these essential elements but also induces various structural, physio-biochemical, and morphological changes in plants at high concentration and results in nutrient imbalance and deficiency of these essential elements when they are low in the soil. In order to cope with Cd toxicity, a number of signaling pathways are activated in plants like the MAPK pathway. These signaling pathways help in Cd detoxification via ion transport, regulating metabolism, ROS homeostasis, and activation of different transcription factors which in turn activate different stress-responsive genes. Cd detoxification through peptides such as phytochelatins and metallothioneins which are produced in plants in response to heavy metal stress constitutes an important part of plants’ defense against Cd toxicity. Moreover, the metabolism of the nitrogenous compounds like amino acids also plays an important role in plants in alleviating the negative impacts of Cd stress. The production of a number of these amino acids like proline, serine, arginine, asparagine, and many others is escalated under Cd stress, which then act as signaling molecules, osmolytes, and free radical scavengers and improve the growth parameters of plants. In the present chapter, we have tried to describe a holistic view of Cd uptake, translocation, signaling, and detoxification via phytochelatins and metallothioneins and its impact on amino acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aftab T, Khan MMA, da Silva JAT, Idrees M, Naeem M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30(4):425–435

    Article  CAS  Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    Article  CAS  Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34. https://doi.org/10.1590/S1677-04202005000100003

    Article  CAS  Google Scholar 

  • Bereczky Z, Wang H-Y, Schubert V et al (2003) Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704. [PubMed: 12709425]

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanita di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings overexpressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53(374):1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  CAS  PubMed  Google Scholar 

  • Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22(3):904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45(11):1681–1693

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yang L, Gu J, Bai X, Ren Y, Fan T, Han Y, Jiang L, **ao F, Liu Y, Cao S (2015) MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. New Phytol 205:570–582

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, **ao F, Liu YS, Cao S (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmielowska-Bak J, Lefevre I, Lutts S, Deckert J (2013) Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 170(18):1585–1594. https://doi.org/10.1016/j.jplph.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245–213. https://doi.org/10.3389/fpls.2014.00245

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot M (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Alonso JM, Le Jean M et al (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):663–667. https://doi.org/10.4161/psb.5.6.11425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrikova AG, Apostolova EL (2019) Damage and protection of the photosynthetic apparatus under cadmium stress. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Elsevier, Amsterdam, pp 275–298

    Chapter  Google Scholar 

  • El Rasafi T, Oukarroum A, Haddioui A, Song H, Kwon EE, Bolan N, Tack FMG, Abin Sebastian MNV, Rinklebe J (2020) Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1835435

  • Fan SK, Fang XZ, Guan MY, Ye QY, Lin XY, Du ST, ** C (2014) Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake. Front Plant Sci 5:721

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, Oono Y, Zhang XD, Chen J, Yang ZM (2016) Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant Cell Environ 39:2629–2649

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Tan J, Zhang Y, Liang S, **ang S, Wang H, Chai T (2017) Isolation and characterization of a novel cadmium-regulated yellow stripe-like transporter (SnYSL3) in Solanum nigrum. Plant Cell Rep 36(2):281–296

    Article  CAS  PubMed  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva RJ, Montillet L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  PubMed  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763(7):595–608. https://doi.org/10.1016/j.bbamcr.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146(4):1697–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ et al (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Clarke JM, Kochian LV (2005) Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol 167:391–401

    Article  CAS  PubMed  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13(2):225–232

    Article  CAS  PubMed  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, FloresCáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  PubMed  Google Scholar 

  • Howden R, Cobbett CS (1992) Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiol 99:100–107

    Article  Google Scholar 

  • Huang J, Zhang Y, Peng JS, Zhong C, Yi HY, Ow DW, Gong JM (2012) Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physol 158:1779–1788

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MM, Hoque MA, Okuma E, Jannat R, Banu MNA, Jahan MS, Murata Y (2009) Proline and glycinebetaine confer cadmium tolerance on tobacco bright yellow-2 cells by increasing ascorbate-glutathione cycle enzyme activities. Biosci Biotechnol Biochem 73:2320–2323

    Article  CAS  PubMed  Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Muneer S, Guerriero G, Liu S, Vishwakarma K, Chauhan DK, Dubey NK, Tripathi DK, Sharma S (2018) Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. Plant Signal Behav 13(9):1–11. https://doi.org/10.1080/15592324.2018.1507401

    Article  CAS  Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12–21. https://doi.org/10.3389/fpls.2018.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MY, Prakash V, Yadav V, Chauhan DK, Prasad SM, Ramawat N, Singh VP, Tripathi DK, Sharma S (2019) Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging. Plant Physiol Biochem 142:193–201. https://doi.org/10.1016/j.plaphy.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50(2):207–218

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, PolanschĂĽtz L, Zechmann B (2014) Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 251:755–769

    Article  CAS  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kuhnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65:4241–4253

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Shim D, Song WY, Hwang I, Lee Y (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC, Yeh KC (2009) Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol 182(2):392–404

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang X, Zeng G, Qu D, Gu J, Zhou M, Chai L (2007) Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Boehmeria nivea (L.) Gaud. Chemosphere 69(1):99–107. https://doi.org/10.1016/j.chemosphere.2007.04.040

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chen W, He X (2015) Influence of Cd2+ on growth and chlorophyll fluorescence in a hyperaccumulator: Lonicera japonica Thunb. J Plant Growth Regul 34:672–676

    Article  CAS  Google Scholar 

  • Liu Y, Liu L, Qi J, Dang P, **a T (2019) Cadmium activates ZmMPK3-1 and ZmMPK6-1 via induction of reactive oxygen species in maize roots. Biochem Biophys Res Commun 516(3):747–752

    Article  CAS  PubMed  Google Scholar 

  • Luo J-S, Huang J, Zeng D-L, Peng J-S, Zhang G-B, Ma H-L, Guan Y, Yi H-Y, Fu Y-L, Han B, Lin H-X, Qian Q, Gong J-M (2018) A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9:645

    Article  PubMed  PubMed Central  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Mei H, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 871:1–18. https://doi.org/10.3389/fpls.2018.01771

    Article  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P-1B-type of ATPase affects root-to shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49(6):1108–1121. https://doi.org/10.1111/j.1365-313X.2006.03023.x

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469

    Article  CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochem Biophys Acta 1763:609–620

    Article  CAS  PubMed  Google Scholar 

  • Nriagu J (1988) A silent killer of environmental metal poisoning. Environ Pollut 50(1–2):139–161

    Article  CAS  PubMed  Google Scholar 

  • Oomen RJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181(3):637–650

    Article  CAS  PubMed  Google Scholar 

  • PavlĂ­ková D, Zemanová V, Procházková D, PavlĂ­k M, Száková J, Wilhelmová N (2014) The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicol Environ Saf 100:166–170

    Article  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavaddeur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Pinto AP, Mota AM, de Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Sci Total Environ 326(1–3):239–247

    Article  CAS  PubMed  Google Scholar 

  • Polle A, Schuetzenduebel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin, pp 187–215

    Chapter  Google Scholar 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. C R Biol 339(11-12):462–474. https://doi.org/10.1016/j.crvi.2016.08.002

    Article  PubMed  Google Scholar 

  • Rahman MF, Ghosal A, Alam MF, Kabir AH (2017) Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol Environ Saf 135:165–172

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133(1):126–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Ur Rehman MZ, Rinklebe J, Tsang DC, Bashir A, Maqbool A, Tack FMG, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191

    Article  PubMed  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  CAS  PubMed  Google Scholar 

  • Sakouhi L, Rahoui S, Gharsallah C, Munemasa S, El Ferjani E, Murata Y, Chaoui A (2018) Effects of calcium and EGTA on thiol homeostasis and defense-related enzymes in Cd-exposed chickpea roots. Acta Physiol Plant 40:20

    Article  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, Von WirĂ©n N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279(10):9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Seher Y, Filiz O, Melike B (2013) Gamma-amino butyric acid, glutamate dehydrogenase and glutamate decarboxylase levels in phylogenetically divergent plants. Plant Syst Evol 299(2):403–412

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49:1531–1535

    Article  CAS  PubMed  Google Scholar 

  • Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Feng SJ, Chen J, Zhao WT, Yang ZM (2017) A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biol 17(1):1–15

    Article  CAS  Google Scholar 

  • Sui FQ, Chang JD, Tang Z, Liu WJ, Huang XY, Zhao FJ (2018) Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 433(1):377–389

    Article  CAS  Google Scholar 

  • Sun Y, Liu Z, Guo J, Zhu Z, Zhou Y, Guo C, Hu Y, Li J, Shangguan Y, Li T, Hu Y, Wu R, Li W, Rochaix J-D, Miao Y, Sun X (2020) WRKY33-PIF4 loop is required for the regulation of H2O2 homeostasis. Biochem Biophys Res Commun 527(4):922–928. https://doi.org/10.1016/j.bbrc.2020.05.041

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, **a S, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomine S, Schroeder JI (2013) Plant metal transporters with homology to proteins of the NRAMP family. In: Madame curie bioscience database. Landes Bioscience, Austin

    Google Scholar 

  • Thomine S, Wang R, Ward JM et al (2000) Cadmium and iron transport by members of a plant transporter gene family in Arabidopsis with homology to NRAMP genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci U S A 108:20959–20964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev A, Lidon F (2011) Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants. Emirates J Food Agric 23:130–136

    Article  Google Scholar 

  • Vavasseur PBLLNA, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576(3):306–312

    Article  CAS  PubMed  Google Scholar 

  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73(3):469–485

    Article  CAS  PubMed  Google Scholar 

  • Wang HC, Wu JS, Chia JC, Yang CC, Wu YJ, Juang RH (2009) Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J Agric Food Chem 57:7348–7355

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Li Y, Zhang YX, Chai TY (2013) Molecular cloning and characterization of a Brassica juncea yellow stripe-like gene, BjYSL7, whose overexpression increases heavy metal tolerance of tobacco. Plant Cell Rep 32(5):651–662

    Article  CAS  PubMed  Google Scholar 

  • Wani KI, Zehra A, Choudhary S, Naeem M, Khan MMA, Castroverde CDM, Aftab T (2020) Mechanistic insights into strigolactone biosynthesis, signaling, and regulation during plant growth and development. J Plant Growth Regul 88:1–17

    Google Scholar 

  • Wani KI, Choudhary S, Zehra A, Naeem M, Weathers P, Aftab T (2021a) Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches. Planta 254(2):1–15

    Article  Google Scholar 

  • Wani KI, Naeem M, Castroverde CDM, Kalaji HM, Albaqami M, Aftab T (2021b) Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. Int J Mol Sci 22(17):9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf AE, Dietz KJ, Schroder P (1996) Degradation of glutathione s-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett 384:31–34

    Article  CAS  PubMed  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Wu FB, Chen F, Wei K, Zhang GP (2004) Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57(6):447–454

    Article  CAS  PubMed  Google Scholar 

  • Yan JL, Wang PT, Wang P, Yang M, Lian XM, Tang Z, Huang CF, Salt DE, Zhao FJ (2016) A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivars. Plant Cell Environ 39:1941–1954

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Zhang YY, Zhang L, Hu J, Zhang X, Lu K, Dong H, Wang D, Zhao FJ, Huang CF, Lian XM (2014) OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J Exp Bot 65:4849–4486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafarzadeh A, Rahimzadeh H, Mahvi AH (2018) Health risk assessment of heavy metals in vegetables in an endemic esophageal cancer region in Iran. Health Scope 7(3):e12340. https://doi.org/10.5812/jhealthscope.12340

    Article  Google Scholar 

  • Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E (2015) Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res Int 22(14):10679–10689. https://doi.org/10.1007/s11356-015-4270-8

    Article  CAS  PubMed  Google Scholar 

  • Zemanová V, PavlĂ­k M, PavlĂ­ková D, Kyjaková P (2015) Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ 61:285–290

    Article  Google Scholar 

  • Zemanová V, PavlĂ­k M, PavlĂ­ková D (2017) Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species. PLoS One 12(5):e0177963

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Li X, Wang C, Shen Z (2000) Effect of cadmium on autoxidation rate of tissue and inducing accumulation of free proline in seedlings of mung bean. J Plant Nutr 23(3):357–368

    Article  CAS  Google Scholar 

  • Zheng X, Chen L, Li X (2018) Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot Stud 59(1):1–10

    Article  CAS  Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582

    Article  PubMed  Google Scholar 

  • Zhu G, **ao H, Guo Q, Zhang Z, Zhao J, Yang D (2018) Effects of cadmium stress on growth and amino acid metabolism in two compositae plants. Ecotoxicol Environ Saf 158:300–308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, K.I., Zehra, A., Choudhary, S., Naeem, M., Aftab, T. (2022). Cadmium, a Nonessential Heavy Metal: Uptake, Translocation, Signaling, Detoxification, and Impact on Amino Acid Metabolism. In: Kumar, K., Srivastava, S. (eds) Plant Metal and Metalloid Transporters. Springer, Singapore. https://doi.org/10.1007/978-981-19-6103-8_4

Download citation

Publish with us

Policies and ethics

Navigation