Cytotoxicity and Biocompatibility of Biobased Materials

  • Chapter
  • First Online:
Biobased Materials

Abstract

Today, nanotechnology has been defined as the world’s fastest-growing area. In this area, the materials have been designed for use in especially biomedical applications including imaging, drug delivery, biosensors, and gene delivery. The potential benefits of these materials have been known, but also may adversely affect human health by a variety of mechanisms. The adverse effects of materials may be related to their size, chemicals of constituents, utilization of toxic and hazardous solvents, their ability to produce reactive oxygen species, etc. The use of natural bio-based materials presents a possible novel avenue for the development of new biocompatible, biodegradable, and non-toxic products. The purpose of this chapter is to review the information on the act of bio-based materials in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Affatato S, Ruggiero A, Merola M (2015) Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos B Eng 83:276–283

    Article  CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science (New York, N.Y.), 303(5665), 1818–1822. https://doi.org/10.1126/science.1095833

  • An LL, Si CL, Wang GH, Sui WJ, Tao ZY (2019) Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind Crops Prod 128:177–185. https://doi.org/10.1016/j.indcrop.2018.11.009[5]

    Article  CAS  Google Scholar 

  • Anderson JM (2015) Exploiting the inflammatory response on biomaterials research and development. J Mater Sci: Mater Med 26:121. https://doi.org/10.1007/s10856-015-5423-5

    Article  CAS  Google Scholar 

  • Anselmo AC, Mitragotri S (2014) An overview of clinical and commercial impact of drug delivery systems. J Controlled Release Official J Controlled Release Soc 190:15–28. https://doi.org/10.1016/j.jconrel.2014.03.053

    Article  CAS  Google Scholar 

  • Bharadwaj A (2021) An overview on biomaterials and its applications in medical science. In: IOP conference series: materials science and engineering, Vol 1116, No 1. IOP Publishing, p 012178

    Google Scholar 

  • Bhat S, Kumar A (2013) Biomaterials and Bioengineering Tomorrow’s Healthcare. Biomatter 3(3):e24717

    Google Scholar 

  • Birajdar MS, Joo H, Koh WG, Park H (2021) Natural bio-based monomers for biomedical applications: a review. Biomater Res. 2021;25(1):8. Published 2021 Apr 1. https://doi.org/10.1186/s40824-021-00208-8

  • Borandeh S, van Bochove B, Teotia A, Seppälä J (2021) Polymeric drug delivery systems by additive manufacturing. Adv Drug Deliv Rev 173:349–373. https://doi.org/10.1016/j.addr.2021.03.022 Epub 2021 Apr 6 PMID: 33831477

    Article  CAS  Google Scholar 

  • Carvalho JA, da Silva AA, Tedesco AC, Junior MB, Simioni AR (2019) Functionalized photosensitive gelatin nanoparticles for drug delivery application. J Biomater Sci Polym Ed 30(7):508–525

    Article  CAS  Google Scholar 

  • Chambre L, Martín-Moldes Z, Parker RN, Kaplan DL (2020) Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv Drug Deliv Rev 160:186–198

    Article  CAS  Google Scholar 

  • Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Singh SR, Pillai SR (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):1974. https://doi.org/10.3390/ijms17121974

    Article  CAS  Google Scholar 

  • Chen L et al (2019) Fabrication of the antibiotic-releasing gelatin/PMMA bone cement. Colloids and surfaces. B, Biointerfaces 183:110448. https://doi.org/10.1016/j.colsurfb.2019.110448

  • Cheng L, Deng B, Luo W, Nie S, Liu X, Yin Y, Liu S, Wu Z, Zhan P, Zhang L, Chen J (2020) pH-Responsive Lignin-based nanomicelles for oral drug delivery. J Agric Food Chem 68(18):5249–5258

    Article  CAS  Google Scholar 

  • Chirila TV, Harkin D (2016) Biomaterials and regenerative medicine in ophthalmology. Woodhead Publishing

    Google Scholar 

  • Cobb WS, Peindl RM, Zerey M et al (2009) Mesh terminology 101. Hernia 13:1–6. https://doi.org/10.1007/s10029-008-0428-3

    Article  CAS  Google Scholar 

  • Davis JR (2003) Overview of biomaterials and their use in medical devices. Handbook of materials for medical devices, 1–11

    Google Scholar 

  • Del Gaudio C, Crognale V, Serino G, Galloni P, Audenino A, Ribatti D, Morbiducci U (2017) Natural polymeric microspheres for modulated drug delivery. Mater Sci Eng C Mater Biol Appl 1(75):408–417

    Article  Google Scholar 

  • Dong H, Zheng L, Yu P, Jiang Q, Wu Y, Huang C, Yin B (2020) Characterization and application of lignin–carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustain Chem Eng 8(1):256–266

    Article  CAS  Google Scholar 

  • Dos Santos V, Brandalise RN, Savaris M Biomaterials: Characteristics and properties. Topics in mining, metallurgy and materials engineering, 5–15. https://doi.org/10.1007/978-3-319-58607-6_2

  • D’Souza J, Camargo R, Yan N (2017) Biomass liquefaction and alkoxylation: a review of structural characterization methods for bio-based polyols. Polym Rev 57:668–694

    Article  CAS  Google Scholar 

  • Fang Y, Fan L, Bai H, Li B, Zhang H, **n F, Ma J, Jiang M (2021) Bio-based molecules for biosynthesis of nano-metallic materials. Sheng wu Gong Cheng xue bao. Chinese J Biotechnol 37(2):541–560. https://doi.org/10.13345/j.cjb.200336

  • Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R (2018) Advances in biomaterials for drug delivery. Advanced materials (Deerfield Beach, Fla.), e1705328. Advance online publication.https://doi.org/10.1002/adma.201705328

  • Groth T, Falck P, Miethke R-R (1995) Cytotoxicity of biomaterials—basic mechanisms and in vitro test methods: a review. Altern Lab Anim 23(6):790–799. https://doi.org/10.1177/026119299502300609

    Article  Google Scholar 

  • Harrisson K (2007) Introduction to polymeric drug delivery systems. In: Jenkins MBT-BP (Ed), Biomed. Polym, Elsevier, pp 33–56. https://doi.org/10.1533/9781845693640.33

  • Hench LL (1980) Biomaterials. Science (New York, N.Y.), 208(4446), 826–831. https://doi.org/10.1126/science.6246576

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science (New York, N.Y.) 295(5557), 1014–1017. https://doi.org/10.1126/science.1067404

  • Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J Royal Soc Interface 7(Suppl) 4(Suppl 4):S379–S391. https://doi.org/10.1098/rsif.2010.0151.focus

  • Hildebrand H (2013) Biomaterials—a history of 7000 years. BioNanoMaterials 14(3–4):119–133. https://doi.org/10.1515/bnm-2013-0014

    Article  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Google Scholar 

  • Huang Y-C, Huang Y-Y (2006) Biomaterials and strategies for nerve regeneration. Artif Organs 30:514–522. https://doi.org/10.1111/j.1525-1594.2006.00253.x

    Article  Google Scholar 

  • Hyun H, Park J, Willis K, Park JE, Lyle LT, Lee W, Yeo Y (2018) Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials 180:206–224

    Article  CAS  Google Scholar 

  • Kim SJ, Park SJ, Kim SI (2003) Swelling behavior of interpenetrating polymer network hydrogels composed of poly (vinyl alcohol) and chitosan. React Funct Polym 55(1):53–59

    Article  CAS  Google Scholar 

  • Kuo CK, Marturano JE, Tuan RS (2010) Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. BMC Sports Sci Med Rehabil 2:20. https://doi.org/10.1186/1758-2555-2-20

    Article  Google Scholar 

  • Kou Z, Wu Z, Tong KA, Holshouser B, Benson RR, Hu J, Haacke EM (2010) The role of advanced MR imaging findings as biomarkers of traumatic brain injury. J Head Trauma Rehabil (4):267–82. https://doi.org/10.1097/HTR.0b013e3181e54793

  • Langer R (1998) Drug delivery and targeting. Nature 392(6679 Suppl):5–10

    CAS  Google Scholar 

  • Langer RS, Peppas NA (1981) Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4):201–214

    Article  CAS  Google Scholar 

  • Lauto A, Mawad D, Foster LJR (2008) Adhesive biomaterials for tissue reconstruction. J Chem Technol Biotechnol 83:464–472. https://doi.org/10.1002/jctb.1771

    Article  CAS  Google Scholar 

  • Lee GH, Chang Y, Kim TJ (2014) 4-Characterization, Ultrasmall lanthanide oxide nanoparticules for biomedical imaging and therapy, pp 43–67. https://doi.org/10.1533/9780081000694.43

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  Google Scholar 

  • Lim GT, Valente SA, Hart-Spicer CR, Evancho-Chapman MM, Puskas JE, Horne WI, Schmidt SP (2013) New biomaterial as a promising alternative to silicone breast implants. J Mech Behav Biomed Mater 21:47–56

    Article  Google Scholar 

  • Liu L, Fishman ML, Hicks KB, Kende M, Ruthel G. Pectin/zein beads for potential colon-specific drug delivery: synthesis and in vitro evaluation. Drug Deliv 13(6):417–23

    Google Scholar 

  • Malekani J, Schmutz B, Gu YT, Schuetz M, Yarlagadda P (2011) Biomaterials in orthopedic bone plates: a review. In: Yarlagadda P (Ed) Proceedings of the annual international conference on materials science, metal and manufacturing. Global Science and Technology Forum, Singapore, 2011, pp 71–76

    Google Scholar 

  • Marin E, Boschetto F, Pezzotti G (2020) Biomaterials and biocompatibility: an historical overview. J Biomed Mater Res 108:1617–1633. https://doi.org/10.1002/jbm.a.36930

    Article  CAS  Google Scholar 

  • Mater J, Chem B 6 (2018), pp 3475–3485; Vijayan VM, Tucker BS, Hwang PTJ, Bobba PS, Jun HW, Catledge SA, Vohra YK, Thomas V (2020) Non-equilibrium organosilane plasma polymerization for modulating the surface of PTFE towards potential blood contact applications. J Mater Chem B 8:2814–2825

    Google Scholar 

  • Migonney V (2014) Biomaterials (Migonney/Biomaterials) || History of Biomaterials, 1–10. https://doi.org/10.1002/9781119043553

  • Mi HY, **g X, Thomsom JA, Turng LS, Promoting endothelial cell affinity and antithrombogenicity of polytetrafluoroethylene (PTFE) by mussel-inspired modification and RGD/heparin grafting

    Google Scholar 

  • Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704

    Article  CAS  Google Scholar 

  • Mitura S, Sionkowska A, Jaiswal A (2020) Biopolymers for hydrogels in cosmetics: review. Journal of materials science. Mater Med 31(6):50. https://doi.org/10.1007/s10856-020-06390-w

  • Mukherjee PK, Bahadur S, Chaudhary SK, Kar A, Mukherjee K (2015) Quality related safety issue-evidence-based validation of herbal medicine farm to pharma. In: Evidence-based validation of herbal medicine. Elsevier, pp 1–28

    Google Scholar 

  • Muñoz-Bonilla A, Echeverria C, Sonseca Á, Arrieta MP, Fernández-García M (2019) Bio-based polymers with antimicrobial properties towards sustainable development. Materials (Basel) 12(4):641. Published 2019 Feb 20. https://doi.org/10.3390/ma12040641

  • Oliveira JM, Reis RL (2017) [Studies in Mechanobiology, Tissue Engineering and Biomaterials] Regenerative strategies for the treatment of knee joint disabilities 21||Biomaterials as tendon and ligament substitutes: current developments. 8(Chapter 17), 349–371. https://doi.org/10.1007/978-3-319-44785-8_17

  • Palakurthi NK, Correa ZM, Augsburger JJ, Banerjee RK (2011) Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study. J Ocular Pharmacol Therapeutics: Official J Assoc Ocular Pharmacol Therapeutics 27(2):151–156. https://doi.org/10.1089/jop.2010.0037

    Article  CAS  Google Scholar 

  • Pashneh-Tala S, MacNeil S, Claeyssens F (2016) The tissue-engineered vascular graft-past, present, and future Tissue Eng. Part B-Rev 22:68–100

    Google Scholar 

  • Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Deliv Rev 11(1–2):1–35

    Article  CAS  Google Scholar 

  • Pikis S et al (2015) Potential neurotoxic effects of polymethylmethacrylate during cranioplasty. J Clin Neurosci Official J Neurosurg Soc Australasia 22(1):139–43

    Google Scholar 

  • Ponrasu T, Chen BH, Chou TH, Wu JJ, Cheng YS (2021) Fast dissolving Electrospun nanofibers fabricated from jelly fig polysaccharide/pullulan for drug delivery applications. Polymers (basel) 13(2):241

    Article  CAS  Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  CAS  Google Scholar 

  • Schueller R, Romanowski P (Eds) (1999) Conditioning agents for hair and skin. CRC Press

    Google Scholar 

  • Si C, Jiayun X (2020) Recent advances in bio-medicinal and pharmaceutical applications of bio-based materials. Current Med Chem 27(28). https://doi.org/10.2174/092986732728200621210700

  • Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34(4–5):147–230

    Article  Google Scholar 

  • Seeli DS, Prabaharan M (2016) Guar gum succinate as a carrier for colon-specific drug delivery. Int J Biol Macromol 84:10–15

    Article  CAS  Google Scholar 

  • Si C, Xu J (2020) Recent advances in bio-medicinal and pharmaceutical applications of bio-based materials. Current Med Chem 27(28):4581–4583.https://doi.org/10.2174/092986732728200621210700

  • Sung YK, Kim SW (2020) Recent advances in polymeric drug delivery systems. Biomater Res 24:12. https://doi.org/10.1186/s40824-020-00190-7

    Article  CAS  Google Scholar 

  • Sun Z, Song C, Wang C, Hu Y, Wu J (2020) Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm 17(2):373–391. https://doi.org/10.1021/acs.molpharmaceut.9b01020

  • Thomas D, Mathew N, Nath MS (2021) Starch modified alginate nanoparticles for drug delivery application. Int J Biol Macromol 15(173):277–284

    Article  Google Scholar 

  • Tiwari G, Tiwari R, Bannerjee S, Bhati L, Pandey S, Pandey P, Sriwastawa B (2012) Drug delivery systems: an updated review. Int J Pharm Investig. https://doi.org/10.4103/2230-973x.96920

    Article  Google Scholar 

  • Vaishya R, Chauhan M, Vaish A (2013) Bone cement. J Clinical Orthopedics Trauma 4(4):157–163

    Article  Google Scholar 

  • Wang CE, Wei H, Tan N, Boydston AJ, Pun SH (2016) Sunflower polymers for folate-mediated drug delivery. Biomacromol 17(1):69–75. https://doi.org/10.1021/acs.biomac.5b01176

    Article  CAS  Google Scholar 

  • Wang B, Wang S, Zhang Q, Deng Y, Li X, Peng L, Zuo X, Piao M, Kuang X, Sheng S, Yu Y (2019) Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomater 96:55–67. https://doi.org/10.1016/j.actbio.2019.05.044

    Article  CAS  Google Scholar 

  • Weiss M, Haufe J, Carus M, Brandão M, Bringezu S, Hermann B, Patel MK (2012) A review of the environmental impacts of biobased materials. J Ind Ecol 2012(16):S169–S181. https://doi.org/10.1111/j.1530-9290.2012.00468.x

    Article  CAS  Google Scholar 

  • Wen H, Jung H, Li X (2015) Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J 17:1327–1340. https://doi.org/10.1208/s12248-015-9814-9

    Article  CAS  Google Scholar 

  • Wendels S, Avérous L (2020) Biobased polyurethanes for biomedical applications. Bioact Mater 6(4):1083–1106. Published 2020 Oct 15. https://doi.org/10.1016/j.bioactmat.2020.10.002

  • Williams D (1990) An introduction to medical and dental materials. Concise encyclopedia of medical & dental materials. Pergamon Press, Oxford and The MIT Press Cambridge

    Google Scholar 

  • Williams D (2008) The relationship between biomaterials and nanotechnology. Biomaterials 29(12):1737–1738. https://doi.org/10.1016/j.biomaterials.2008.01.003

    Article  CAS  Google Scholar 

  • Wilson ME, Apple DJ, Bluestein EC, Wang XH (1994) Intraocular lenses for pediatric implantation: biomaterials, designs, and sizing. J Cataract Refract Surg 20(6):584–591

    Article  CAS  Google Scholar 

  • Xue L, Greisler HP (2003) Biomaterials in the development and future of vascular grafts. J Vasc Surg 37(2):472–480

    Article  Google Scholar 

  • Yalcin S (2019) Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line. Pharm Dev Technol 24(8):1032–1037

    Article  CAS  Google Scholar 

  • Yalcin S, Unsoy G, Mutlu P, Khodadust R, Gunduz U (2014) Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line. Am J Ther 21(6):453–461

    Article  Google Scholar 

  • Yang E et al (2018) Bio-based polymers for 3D printing of Bioscaffolds. Polymer reviews (Philadelphia, Pa.) 58(4):668–687. https://doi.org/10.1080/15583724.2018.1484761

  • Yermak IM, Gorbach VI, Glazunov VP, Kravchenko AO, Mishchenko NP, Pimenova EA, Davydova VN (2018) Liposomal form of the echinochrome-carrageenan complex. Mar Drugs 16(9):324

    Article  Google Scholar 

  • You-**ong W, Robertson JL, Spillman WB, Claus RO (2004) Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility 21(8):1362–1373. https://doi.org/10.1023/b:pham.0000036909.41843.1

  • Yu C, Yang H, Wang L, Thomson JA, Turng LS, Guan G (2021) Surface modification of polytetrafluoroethylene (PTFE) with a heparin-immobilized extracellular matrix (ECM) coating for small-diameter vascular grafts applications. Mater Sci Eng C Mater Biol Appl 128:112301

    Article  CAS  Google Scholar 

  • Yu J, Xu X, Yao F, Luo Z, ** L, **e B, ... Chen H (2014) In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. Int J Pharmaceutics 470(1–2):151–157

    Google Scholar 

  • Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Yalcin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yalcin, S., Yıldırım, M., Kamil, N.İ.K. (2023). Cytotoxicity and Biocompatibility of Biobased Materials. In: Mishra, A.K., Hussain, C.M. (eds) Biobased Materials. Springer, Singapore. https://doi.org/10.1007/978-981-19-6024-6_2

Download citation

Publish with us

Policies and ethics

Navigation