Neuroevolution-Based Earthquake Intensity Classification for Onsite Earthquake Early Warning

  • Conference paper
  • First Online:
Machine Learning, Image Processing, Network Security and Data Sciences

Abstract

Earthquake warning systems are adopted as the last resort for providing automated actions preventing secondary hazards due to earthquakes. However, existing methodologies do not provide site-specific warnings related to the intensity of the earthquake at the warning site. Moreover, the use of evolutionary techniques is also not explored for earthquake early warning (EEW). In this article, a warning methodology for onsite alert during a strong earthquake (Modified Mercalli Intensity > V) with potential for damage is proposed. Neuroevolutionary technique is applied on a balanced dataset to enhance precision and recall from 64.09% and 46.68% to 95.03% and 94.47%, respectively, after the proposed dataset balancing, which provided 90.02% warning accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao Y, Takano K (1999) An artificial neural network approach for broadband seismic phase picking. Bull Seismol Soc Am 89:670–680

    Article  Google Scholar 

  2. Günaydn K, Günaydn A (2008) Peak ground acceleration prediction by artificial neural networks for northwestern Turkey. Math Probl Eng 2008. https://doi.org/10.1155/2008/919420

  3. Satriano C, Wu Y-M, Zollo A, Kanamori H (2011) Earthquake early warning: concepts, methods and physical grounds. Soil Dyn Earthq Eng 31:106–118. https://doi.org/10.1016/j.soildyn.2010.07.007

    Article  Google Scholar 

  4. Orlic N, Loncaric S (2010) Earthquake-explosion discrimination using genetic algorithm-based boosting approach. Comput Geosci 36:179–185. https://doi.org/10.1016/j.cageo.2009.05.006

    Article  Google Scholar 

  5. Stankiewicz J, Bindi D, Oth A, Parolai S (2013) Designing efficient earthquake early warning systems: case study of Almaty, Kazakhstan. J Seismol 17:1125–1137. https://doi.org/10.1007/s10950-013-9381-4

    Article  Google Scholar 

  6. Zhang Q, Wang C (2008) Using genetic algorithm to optimize artificial neural network: A case study on earthquake prediction. In: Proceedings of the 2nd international conference on genetic and evolutionary computing WGEC, pp 128–131. https://doi.org/10.1109/WGEC.2008.96

  7. Al-Sahaf H, Bi Y, Chen Q, Lensen A, Mei Y, Sun Y, Tran B, Xue B, Zhang M (2019) A survey on evolutionary machine learning. J R Soc New Zeal 49:205–228. https://doi.org/10.1080/03036758.2019.1609052

    Article  Google Scholar 

  8. Back T, Hammel U, Schwefel H-P (1997) Evolutionary computation: comments on the history and current state. IEEE Trans Evol Comput 1:3–17. https://doi.org/10.1109/4235.585888

    Article  Google Scholar 

  9. Fogel DB (2000) What is evolutionary computation? IEEE Spectr 37:26–32. https://doi.org/10.1109/6.819926

    Article  Google Scholar 

  10. Mishra A, Agarwal C, Sharma A, Bedi P (2014) Optimized gray-scale image watermarking using DWT–SVD and firefly algorithm. Expert Syst Appl 41:7858–7867. https://doi.org/10.1016/j.eswa.2014.06.011

    Article  Google Scholar 

  11. Horng M-H (2012) Vector quantization using the firefly algorithm for image compression. Expert Syst Appl 39:1078–1091. https://doi.org/10.1016/j.eswa.2011.07.108

    Article  Google Scholar 

  12. Grosan C, Abraham A, Chis M (2006) Swarm intelligence in data mining

    Google Scholar 

  13. Chakraborty A, Kar AK (2017) Swarm intelligence: a review of algorithms. Model Optim Sci Technol 10:475–494. https://doi.org/10.1007/978-3-319-50920-4_19

    Article  Google Scholar 

  14. Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61–85. https://doi.org/10.1007/s10462-009-9127-4

    Article  Google Scholar 

  15. Gupta DK, Arora Y, Singh UK, Gupta JP (2012) Recursive ant colony optimization for estimation of parameters of a function

    Google Scholar 

  16. Birattari M, Pellegrini P, Dorigo M (2007) On the invariance of ant colony optimization. IEEE Trans Evol Comput 11:732–742. https://doi.org/10.1109/TEVC.2007.892762

    Article  Google Scholar 

  17. Lafourcade M, Guinand F (2005) Ants for natural language processing, 22 p

    Google Scholar 

  18. Ojha VK, Abraham A, Snášel V (2015) ACO for continuous function optimization: a performance analysis. In: International conference on intelligent systems design and applications (ISDA), pp 145–150. https://doi.org/10.1109/ISDA.2014.7066253

  19. Huang P, Xu Y (2006) PSO-based time-optimal trajectory planning for space robot with dynamic constraints. In: IEEE international conference on robotics and biomimetics. ieeexplore.ieee.org.

    Google Scholar 

  20. Bonyadi MR, Michalewicz Z (2017) Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25:1–54. https://doi.org/10.1162/EVCO_r_00180

    Article  Google Scholar 

  21. Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 2008:1–10. https://doi.org/10.1155/2008/685175

    Article  Google Scholar 

  22. Tan KC, Feng L, Jiang M (2021) Evolutionary transfer optimization—a new frontier in evolutionary computation research. IEEE Comput Intell Mag 16:22–33. https://doi.org/10.1109/MCI.2020.3039066

    Article  Google Scholar 

  23. Miikkulainen R, Forrest S (2021) A biological perspective on evolutionary computation. Nat Mach Intell 3:9–15. https://doi.org/10.1038/s42256-020-00278-8

    Article  Google Scholar 

  24. Asim KM, Idris A, Iqbal T, Martínez-Álvarez F (2018) Seismic indicators based earthquake predictor system using genetic programming and AdaBoost classification. Soil Dyn Earthq Eng 111:1–7. https://doi.org/10.1016/j.soildyn.2018.04.020

    Article  Google Scholar 

  25. Melgani F, Bazi Y (2008) Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 12:667–677. https://doi.org/10.1109/TITB.2008.923147

    Article  Google Scholar 

  26. Shadmand S, Mashoufi B (2016) A new personalized ECG signal classification algorithm using block-based neural network and particle swarm optimization. Biomed Signal Process Control 25:12–23. https://doi.org/10.1016/j.bspc.2015.10.008

    Article  Google Scholar 

  27. Mohais AS, Mohais R, Ward C, Posthoff C (2007) Earthquake classifying neural networks trained with random dynamic neighborhood PSOs. Proceedings of the GECCO 2007 genetic and evolutionary computation conference, pp 110–117. https://doi.org/10.1145/1276958.1276974

  28. Ghasemi Nejad R, Ali Abbaspour R, Mojarab M (2021) Associating earthquakes with faults using cluster analysis optimized by a fuzzy particle swarm optimization algorithm for Iranian provinces. Soil Dyn Earthq Eng 140:106433. https://doi.org/10.1016/j.soildyn.2020.106433

    Article  Google Scholar 

  29. Asim KM, Moustafa SS, Niaz IA, Elawadi EA, Iqbal T, Martínez-Álvarez F (2020) Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus. Soil Dyn Earthq Eng 130. https://doi.org/10.1016/j.soildyn.2019.105932

  30. Adeli H, Panakkat A (2009) A probabilistic neural network for earthquake magnitude prediction. Neural Netw 22:1018–1024. https://doi.org/10.1016/j.neunet.2009.05.003

    Article  Google Scholar 

  31. Rafiei MH, Adeli H (2017) NEEWS: a novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dyn Earthq Eng 100:417–427. https://doi.org/10.1016/j.soildyn.2017.05.013

    Article  Google Scholar 

  32. Böse M, Wenzel F, Erdik M (2008) PreSEIS: a neural network-based approach to earthquake early warning for finite faults. Bull Seismol Soc Am 98:366–382. https://doi.org/10.1785/0120070002

    Article  Google Scholar 

  33. Jozinović D, Lomax A, Štajduhar I, Michelini A (2020) Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophys J Int 222:1379–1389. https://doi.org/10.1093/gji/ggaa233

    Article  Google Scholar 

  34. Hason MM, Hanoon AN, Abdulhameed AA (2021) Particle swarm optimization technique based prediction of peak ground acceleration of Iraq’s tectonic regions. J King Saud Univ Eng Sci. https://doi.org/10.1016/j.jksues.2021.06.004

  35. Falcone R, Lima C, Martinelli E (2020) Soft computing techniques in structural and earthquake engineering: a literature review. Eng Struct 207:110269. https://doi.org/10.1016/j.engstruct.2020.110269

    Article  Google Scholar 

  36. Zhang M, Cagnoni S (2018) Evolutionary computation and evolutionary deep learning for image analysis, signal processing and pattern recognition. In: GECCO 2018 companion—proceedings of the 2018 genetic and evolutionary computation conference companion, pp 1221–1257. https://doi.org/10.1145/3205651.3207859

  37. Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified mercalli intensity in California. Earthq Spectra 15:557–564. https://doi.org/10.1193/1.1586058

    Article  Google Scholar 

  38. Yong W (2021) Risk evaluation model and intelligent assessment of large scale sports events. ieeexplore.ieee.org

    Google Scholar 

  39. Rivero D, Dorado J, Rabuñal J, Pazos A (2010) Generation and simplification of artificial neural networks by means of genetic programming. Neurocomputing 73:3200–3223. https://doi.org/10.1016/j.neucom.2010.05.010

    Article  Google Scholar 

  40. Sreejaya KP, Basu J, Raghukanth STG, Srinagesh D (2021) Prediction of ground motion intensity measures using an artificial neural network. Pure Appl Geophys. https://doi.org/10.1007/s00024-021-02752-9

    Article  Google Scholar 

  41. Ashiru I, Czarnecki CA (1998) Evolving communicating controllers for multiple mobile robot systems. Microprocess Microsyst

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, S., Roy, A., Das, B., Kumar, S. (2023). Neuroevolution-Based Earthquake Intensity Classification for Onsite Earthquake Early Warning. In: Doriya, R., Soni, B., Shukla, A., Gao, XZ. (eds) Machine Learning, Image Processing, Network Security and Data Sciences. Lecture Notes in Electrical Engineering, vol 946. Springer, Singapore. https://doi.org/10.1007/978-981-19-5868-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5868-7_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5867-0

  • Online ISBN: 978-981-19-5868-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation