Smart Plant Breeding for Potato in the Post-genomics Era

  • Chapter
  • First Online:
Smart Plant Breeding for Vegetable Crops in Post-genomics Era

Abstract

Ceaseless development of plant breeding and genetic endeavors have resulted in accidental plant selection, successive harvest training plus urge of food and food item. The headway made toward this objective explained plant genome composition and prompted deciphering the sequence of full DNA of plant genomes controlling the whole plant life. Each crop improvement program is based on broad usage of wild germplasm and opening the genetic diversity repository. Potato (Solanum tuberosum L.) is considered as the most important non-grain vegetation worldwide. It is a significant staple food and has the potential to provide a lot of macro/micronutrients and vitamins when contrasted to other potential food crops, especially in many develo** countries. These characters enable engineered potato to gain the scientific attention for nutrition improvement. Very few genes with their known functions have been reported, while the Potato Genome Sequencing Consortium has recognized many genes having unknown functions. Therefore, it is important to assign systematically the functions of expected genes in order to improve the potato cultivars by using different functional genomic techniques. Such loss-of-function and gain-of-function experimental techniques are helpful for producing the mutants with phenotypic variation. So, potato cultivars improve as “future feed” by generating the desired cultivar after revealing the unknown function of mutants. The commercial deployment of engineered products has become a challenge due to administrative/moral limitations and consumer inclination. In this specific situation, new smart breeding technologies have been discussed to create sans transgene items in a more meticulous, expeditious, and viable way along with their advantages and limitations. Hence, this effect could significantly contribute to the genetic improvement of potato with reference to nutritional/food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 242.64
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 242.64
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  Google Scholar 

  • Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati KK, Sharma H, Kumar J (2020) The rise of the CRISPR/Cpf1 system for efficient genome editing in plants. Front Plant Sci 11:264. https://doi.org/10.3389/fpls.2020.00264

    Article  Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  Google Scholar 

  • Arpaia S, Christiaens O, Giddings K, Jones H, Mezzetti B, MorontaBarrios F, Perry JN, Sweet JB, Taning CNT, Smagghe G et al (2020) Biosafety of GM crop plants expressing dsRNA: data requirements and EU regulatory considerations. Front Plant Sci 11:940

    Article  Google Scholar 

  • Aulakh SS, Veilleux RE, Dickerman AW, Tang G, Flinn BS (2014) Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant. Plant Mol Biol 84:635–658

    Article  Google Scholar 

  • Aulakh SS, Veilleux RE, Tang G, Flinn BS (2015) Characterization of a potato activation tagged mutant, nikku, and its partial revertant. Planta 241(6):1481–1495

    Article  Google Scholar 

  • Aylife MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    Article  Google Scholar 

  • Becker A, Lange M (2010) VIGS genomics goes functional. Trends Plant Sci 15:1–4

    Article  Google Scholar 

  • Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN or CRISPR. Mol Cell 58(4):575–585

    Article  Google Scholar 

  • Brigneti G, Martín-Hernández AM, ** H, Chen J, Baulcombe DC, Baker B, Jones JD (2004) Virus-induced gene silencing in Solanum species. Plant J 39(2):264–272

    Article  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39(5):734–746

    Article  Google Scholar 

  • Busov V, Yordanov Y, Gou J, Meilan R, Ma C, Regan S, Strauss S (2011) Activation tagging is an effective gene tagging system in Populus. Tree Genet Genomes 7:91–101

    Article  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One 10(e0144591)

    Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marrafni LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  Google Scholar 

  • Du J, Tian Z, Liu J, Vleeshouwers VG, Shi X, **e C (2013) Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep 40(2):957–967

    Article  Google Scholar 

  • Duangpan S, Zhang W, Wu Y, Jansky SH, Jiang J (2013) Insertional mutagenesis using Tnt1 retrotransposon in potato. Plant Physiol 163:21–29

    Article  Google Scholar 

  • Dubrovina AS, Aleynova OA, Kalachev AV, Suprun AR, Ogneva ZV, Kiselev KV (2019) Induction of transgene suppression in plants via external application of synthetic dsRNA. Int J Mol Sci 7:1585

    Article  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  Google Scholar 

  • Elias R, Till BJ, Mba C, Al-Safadi B (2009) Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes 2:141

    Article  Google Scholar 

  • Eschen-Lippold L, Landgraf R, Smolka U, Schulze S, Heilmann M, Heilmann I, Hause G, Rosahl S (2012) Activation of defense against Phytophthora infestans in potato by down-regulation of syntaxin gene expression. New Phytol 193(4):985–996

    Article  Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134:1308–1316

    Article  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu JK (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci U S A 111:4632–4637

    Article  Google Scholar 

  • Ferreira SJ, Senning M, Sonnewald S, Kessling PM, Goldstein R, Sonnewald U (2010) Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genomics 11:93

    Article  Google Scholar 

  • Fizikova A, Tikhonova N, Ukhatova Y, Ivanov R, Khlestkina E (2021) Applications of CRISPR/Cas9 system in vegetatively propagated fruit and berry crops. Agronomy 11:1849

    Article  Google Scholar 

  • Fondong VN, Nagalakshmi U, Dinesh-Kumar SP (2016) Novel functional genomics approaches: a promising future in the combat against plant viruses. Phytopathology 106(10):1231–1239

    Article  Google Scholar 

  • Forsyth A, Weeks T, Richael C, Duan H (2016) Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front Plant Sci 7:1572

    Article  Google Scholar 

  • Fritsch C, Staebler A, Happel A, Márquez MAC, Aguiló-Aguayo I et al (2017) Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability 9:1492

    Article  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  Google Scholar 

  • Gebremichael DE, Haile ZM, Negrini F, Sabbadini S, Capriotti L, Mezzetti B, Baraldi E (2021) RNA interference strategies for future management of plant pathogenic fungi: prospects and challenges. Plan Theory 10:650. https://doi.org/10.3390/plants10040650

    Article  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genom 9(2):103–110

    Article  Google Scholar 

  • González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front Plant Sci 10:1649

    Article  Google Scholar 

  • Guo Q, Liu Q, Smith NA, Liang G, Wang MB (2016) RNA silencing in plants: mechanisms, technologies and applications in horticultural crops. Curr Genomics 17(6):476–489

    Article  Google Scholar 

  • Hayashi H, Czaja I, Lubenow H, Schell J, Walden R (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258(5086):1350–1353

    Article  Google Scholar 

  • Hussain T, Aksoy E, Çalışkan ME, Bakhsh A (2019) Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, say). Transgenic Res 28(1):151–164

    Article  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Lizumi H, Goto Y, Matsui M (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation—tagging lines that showed phenotypes in T1 generation. Plant J 36:421–429

    Article  Google Scholar 

  • Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP (2017) An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 232:22–33

    Article  Google Scholar 

  • Johansen IE, Liu Y, Jørgensen B, Bennett EP, Andreasson E, Nielsen KL, Blennow A, Petersen BL (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci Rep 9:17715. https://doi.org/10.1038/s41598-019-54126-w

    Article  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274(5289):982–985

    Article  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:506

    Article  Google Scholar 

  • Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci Rep 11:4487

    Article  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. PNAS 93(3):1156–1160

    Article  Google Scholar 

  • Kolakar SS, Nadukeri S, Jakkeral SA, Lakshmana D, Hanumanthappa M, Gangaprasad S (2018) Role of mutation breeding in improvement of medicinal and aromatic crops: review. J Pharmacogn Phytochem SP3:425–429

    Google Scholar 

  • Kutscher LM, Shaham S (2014) Forward and reverse mutagenesis in C. elegans. WormBook 17:1–26

    Article  Google Scholar 

  • Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther-Nucleic Acids 4:252

    Article  Google Scholar 

  • Li HZ, Zhou WJ, Zhang ZJ, Gu HH, Takeuchi Y, Yoneyama K (2005) Effect of γ-radiation on development, yield and quality of microtubers in vitro in Solanum tuberosum L. Biol Plant 49(4):625–628

    Article  Google Scholar 

  • Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J (2013) A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. Plant Physiol Biochem 67:41–47

    Article  Google Scholar 

  • Liu X, Wu S, Xu J, Sui C, Wei J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sinica B 7(3):292–302

    Article  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. PNAS 102:2232–2237

    Article  Google Scholar 

  • Ma J, **ang H, Donnelly DJ, Meng FR, Xu H, Durnford D, Li XQ (2017) Genome editing in potato plants by Agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol Rep 11:249–258

    Article  Google Scholar 

  • Majumdar R, Rajasekaran K, Cary JW (2017) RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200. https://doi.org/10.3389/fpls.2017.00200

    Article  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21

    Article  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikof S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442

    Article  Google Scholar 

  • McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genom 9(2):111–117

    Article  Google Scholar 

  • Moin M, Bakshi A, Maheswari M, Kirti PB (2017) Small interfering RNA-mediated regulation of gene expression and its role as a plant reverse genetic tool. Ind J Plant Physiol 22(4):549–557

    Article  Google Scholar 

  • Muth J, Hartje S, Twyman RM, Hoferbert HR, Tacke E, Prüfer D (2008) Precision breeding for novel starch variants in potato. Plant Biotechnol J 6:576–584

    Article  Google Scholar 

  • Nayak CA, Suguna K, Narasimhamurthy K, Rastogi NK (2007) Effect of gamma irradiation on histological and textural properties of carrot, potato and beetroot. J Food Eng 79(3):765–770

    Article  Google Scholar 

  • Nicolia A, Proux-Wera E, Ahman I, Onkokesung N, Andersson M, Andreasson E, Zhu LH (2015) Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J Biotechnol 204:17–24

    Article  Google Scholar 

  • O’Malley RC, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertional mutant collections. Methods Mol Biol 1284:323–342

    Article  Google Scholar 

  • Oladosu Y, Rafi MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol Biotechnol Equip 30:1–16

    Article  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. PNAS 107:12034–12039

    Article  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340

    Article  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817

    Article  Google Scholar 

  • Penna S, Jain SM (2017) Mutant resources and mutagenomics in crop plants. Emir J Food Agric 29(9):651–657

    Google Scholar 

  • Petek M, Coll A, Ferenc R, Razinger J, Gruden K (2020) Validating the potential of double-stranded RNA targeting Colorado potato beetle mesh gene in laboratory and field trials. Front Plant Sci 11:1250

    Article  Google Scholar 

  • Radhamony RN, Prasad AM, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol 8:1

    Google Scholar 

  • Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front Plant Sci 5:323

    Article  Google Scholar 

  • Regan S, Gustafson V, Rothwell C, Sardana R, Flinn B, Mallubhotla S, Bagchi M, Siahbazi M, Chakravarty B, Wang-Pruski G, Goyer C, Audy P, Li X-Q, De Koeyer D (2006) Finding the perfect potato: using functional genomics to improve disease resistance and tuber quality traits. Can J Plant Path 28:S247–S255

    Article  Google Scholar 

  • Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci 9:36

    Article  Google Scholar 

  • Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP (2015) Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genom 15:697–706

    Article  Google Scholar 

  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemoto N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774

    Article  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16:12

    Article  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  Google Scholar 

  • Siddappa S, Tiwari JK, Sindhu R, Sharma S, Bhardwaj V, Chakrabarti SK, Singh BP (2014) Phytophthora infestans associated global gene expression profile in a late blight resistant Indian potato cv. Kufri Girdhari. Aust J Crop Sci 8:215–222

    Google Scholar 

  • Singh A, Siddappa S, Bhardwaj V, Singh B, Kumar D, Singh BP (2015) Expression profiling of potato cultivars with contrasting tuberization at elevated temperature using microarray analysis. Plant Physiol Biochem 97:108–116

    Article  Google Scholar 

  • Singh B, Kukreja S, Goutam U (2018) Milestones achieved in response to drought stress through reverse genetic approaches. F1000Res:7:1311

    Google Scholar 

  • Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153

    Article  Google Scholar 

  • Soda N, Verma L, Giri J (2018) CRISPR-Cas9 based plant genome editing: significance, opportunities and recent advances. Plant Physiol Biochem 131:2–11

    Article  Google Scholar 

  • Sundaresha S, Sharma S, Bairwa A, Tomar M, Kumar R, Bhardwaj, V, Jeevlatha A, Bakade R, Salaria N, Thakur K, Singh BP, Chakrabarti SK (2021) Spraying of dsRNA molecules derived from Phytophthora infestans, as a plant protection strategies for the management of potato late blight. https://arxiv.org/abs/quant-ph/2021020280

  • Tadele Z (2016) Mutagenesis and TILLING to dissect gene function in plants. Curr Genomics 17:499–508

    Article  Google Scholar 

  • Thakur A, Sanju S, Siddappa S, Srivastava N, Shukla PK, Pattanayak D, Sharma S, Singh BP (2015) Artificial microRNA mediated gene silencing of Phytophthora infestans single effector Avr3a gene imparts moderate type of late blight resistance in potato. Plant Pathol J 14(1):1–12

    Article  Google Scholar 

  • Tiwari JK, Devi S, Sundaresha S, Chandel P, Ali N, Singh B, Bhardwaj V, Singh BP (2015) Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum. Genome 58(6):305–313

    Article  Google Scholar 

  • Tomar G, Chakrabarti SK, Sharma NN, Jeevalatha A, Sundaresha S, Vyas K, Azmi W (2018) RNAi-based transgene conferred extreme resistance to the geminivirus causing apical leaf curl disease in potato. Plant Biotechnol Rep 12:195

    Article  Google Scholar 

  • Tomar M, Sundaresha S, Singh B, Bhardwaj V, Sood S, Singh B, Salaria N, Thakur K, Kumar A, Sharma N, Goutam U (2021) Validation of molecular response of tuberization in response to elevated temperature by using a transient virus induced gene silencing (VIGS) in potato. Funct Integr Genom 21:215–229

    Article  Google Scholar 

  • Tomoko TM, Hidemitsu N, Makoto H, Hiroaki I (2010) Rice transgenic resources with gain of function phenotypes. Breed Sci 60:493–501

    Article  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  Google Scholar 

  • Unniyampurath U, Pilankatta R, Krishnan MN (2016) RNA interference in the age of CRISPR: will CRISPR interfere with RNAi? Int J Mol Sci 17:291

    Article  Google Scholar 

  • Veillet F, Kermarrec MP, Chauvin L, Guyon-Debast A, Chauvin JE, Gallois JL, Nogué F (2020) Prime editing is achievable in the tetraploid potato, but needs improvement. Biloxi. https://doi.org/10.1101/2020.06.18.159111

  • Vetukuri RR, Dubey M, Kalyandurg PB, Carlsson AS, Whisson SC, Ortiz R (2021) Spray-induced gene silencing: an innovative strategy for plant trait improvement and disease control. Crop Breed Appl Biotechnol 21:e387921S11

    Article  Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  Google Scholar 

  • Wang M, ** H (2017) Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol 25(1):4–6

    Article  Google Scholar 

  • Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005) Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 167:751–760

    Article  Google Scholar 

  • Wang S, Zhang S, Wang W, **ong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    Article  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Nef MM, Nguyen JT, Sato S, Wang ZY, **a Y, Dixon RA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    Article  Google Scholar 

  • **ong JS, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Hortic Res 2:15019

    Article  Google Scholar 

  • Xu X, Pan S, Cheng S, Zhang B, Mu D et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • Yasumoto S, Umemoto N, Lee HJ, Nakayasu M, Sawai S, Sakuma T, Yamamoto T, Mizutani M, Saito K, Muranaka T (2019) Efficient genome engineering using platinum TALEN in potato. Plant Biotechnol 36(3):167–173

    Article  Google Scholar 

  • Ye M, Peng Z, Tang D, Yang Z, Li D, Xu Y, Zhang C, Huang S (2018) Generation of self-compatible diploid potato by knockout of S-RNase. Nat Plants 4:651–654

    Article  Google Scholar 

  • Zaheer K, Akhtar MH (2016) Potato production, usage, and nutrition—a review. Crit Rev Food Sci Nutr 56(5):711–721

    Article  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  Google Scholar 

  • Zhao X, Andersson M, Andersson R (2018) Resistant starch and other dietary fiber components in tubers from a high amylose potato. Food Chem 251:58–63

    Article  Google Scholar 

  • Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalid, S., Siddique, R., Bakhsh, A. (2023). Smart Plant Breeding for Potato in the Post-genomics Era. In: Singh, S., Sharma, D., Sharma, S.K., Singh, R. (eds) Smart Plant Breeding for Vegetable Crops in Post-genomics Era . Springer, Singapore. https://doi.org/10.1007/978-981-19-5367-5_13

Download citation

Publish with us

Policies and ethics

Navigation