Soft Manipulation and Locomotion

  • Chapter
  • First Online:
The Science of Soft Robots

Part of the book series: Natural Computing Series ((NCS))

  • 735 Accesses

Abstract

Soft mechanisms bring a new twist to traditional robotics challenges of object gras**, manipulation, and locomotion. Soft robotic hands are a topic of growing industrial application. A major example of a soft manipulator is a continuum robot arm, which has different features from our human arms. For locomotion, we introduce approaches unique to soft mechanisms, such as peristaltic motion using a deformable body and propulsive motion through interaction with fluid using fins and wings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 90.94
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aditi R, Atul T (2016) Fish-inspired robots: design, sensing, actuation, and autonomy—a review of research. Bioinspir Biomim 11(3):031001

    Article  Google Scholar 

  • Alexander RM (1992) Exploring biomechanics, animals in motion. W.H. Freeman and Company

    Google Scholar 

  • Alexander RM (2002) Principles of animal locomotion. Princeton Univ. Press, Princeton

    Book  Google Scholar 

  • Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  MathSciNet  MATH  Google Scholar 

  • Azuma A (2006) The biokinetics of flying and swimming, 2nd edn. AIAA, Virginia, USA

    Book  Google Scholar 

  • Bolz RE, Tuve GL (1973) Handbook of tables for applied engineering science. CRC Press Inc., Cleveland, USA

    Google Scholar 

  • Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin MR, Lipson H, Jaeger HM (2010) Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci 107(44):18809–18814. https://doi.org/10.1073/pnas.1003250107,Nov

    Article  Google Scholar 

  • Boxerbaum AS et al. (2010) A new theory and methods for creating peristaltic motion in a robotic platform. In: Proceeding of the international conference on robotics and automation (ICRA2010), pp 1221–1227

    Google Scholar 

  • Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Rob 31(6):1261–1280. https://doi.org/10.1109/TRO.2015.2489500

  • Carlton J S, (2012) Propeller design. In: Marine propellers and propulsion, 3rd edn. Butterworth-Heinemann, Oxford, UK, pp 431–458

    Google Scholar 

  • Carrico JD et al (2019) 3D-Printing and machine learning control of soft ionic polymer-metal composite actuators. Sci Rep 9. Article number: 17482

    Google Scholar 

  • Chin DD, Lentink D (2016) Flap** wing aerodynamics: from insects to vertebrates. J Exp Biol 219:920–932

    Article  Google Scholar 

  • Chirikjian GS, Burdick JW (1994) A hyper-redundant manipulator. IEEE Robot Autom Mag 1(4):22–29. https://doi.org/10.1109/100.388263

  • Clapham RJ, Hu H (2014) iSplash-II: realizing fast carangiform swimming to outperform a real fish. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1080–1086

    Google Scholar 

  • Costello JH, Colin SP, Dabiri JO, Gemmell BJ, Lucas KN, Sutherland KR (2021) The hydrodynamics of jellyfish swimming. Ann Rev Mar Sci 13:376–396

    Article  Google Scholar 

  • Denny M (1980) The role of gastropod pedal mucus in locomotion. Nature 285:160–161

    Article  Google Scholar 

  • Dickinson MH, Lighton JRB (1995) Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 268:87–90

    Article  Google Scholar 

  • Dickinson MH, Tu MS (1997) The function of dipteran flight muscle. Comp Biochem Physiol A Physiol 116:223–238

    Article  Google Scholar 

  • Dudley R (2002) The biomechanics of insect flight: From, function, evolution. Princeton University Press, New Jersey.

    Google Scholar 

  • Elger DF, Lebret BA, Crowe CT, Robertson JA (2016) Engineering fluid mechanics 11th edition international student version. Wiley, New York, USA

    Google Scholar 

  • Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analyses. Philos Trans R Soc B 305:1–15

    Google Scholar 

  • Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  Google Scholar 

  • Ewoldt R et al (2007) Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 24;3(5):634–643. https://doi.org/10.1039/b615546d

  • Fantoni G, Santochi M, Dini G, Tracht K, Scholz–Reiter B, Fleischer J, Lien TK, Seliger G, Reinhart G, Franke J, Hansen HN, Verl A (2014) Gras** devices and methods in au- tomated production processes. CIRP Ann Manufact Technol 63(2):679–701

    Google Scholar 

  • Fang H et al (2017) Origami-based earthworm-like locomotion robots. Bioinspiration Biomimetics 12(6)

    Google Scholar 

  • Full RJ (1997) Invertebrate locomotor systems. Oxford University Press, New York

    Book  Google Scholar 

  • Godage IS, Medrano-Cerda GA, Branson DT, Guglielmino E, Caldwell DG (2016) Dynamics for variable length multisection continuum arms. Int J Rob Res 35(6):695–722. https://doi.org/10.1177/0278364915596450

  • Hao Y, Visell Y (2021) Beyond soft hands: efficient gras** with non-anthropomorphic soft grippers. Front Robot AI. https://doi.org/10.3389/frobt.2021.632006

  • Hawkes EW, Blumenschein LH, Greer JD, Okamura AM (2017) A soft robot that navigates its environment through growth. Sci Robot 2(8). https://doi.org/10.1126/scirobotics.aan3028

  • Hidaka Y et al (2009) Peristaltic crawling robot with artificial rubber muscles for large intestine endoscopy. In: Proceedings of 12th International conference on climbing and walking robot (CLAWAR2009), pp 225–232

    Google Scholar 

  • Hirose S, Kado T, Umetani T (1983) Tensor actuated elastic manipulator. In: 6th World congress on theory of machines and mechanisms, pp 978–981

    Google Scholar 

  • Ichikawa S, Mochizuki O (2008) The flow induced by a jellyfish. J Visualization 11(3):257–264

    Article  Google Scholar 

  • Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem Int Ed. https://doi.org/10.1002/anie.201006464

    Article  Google Scholar 

  • Ikeuchi M et al (2012) Development of an in-pipe inspection robot for narrow pipes and elbows using pneumatic artificial muscles. In: IEEE/RSJ international conference on intelligent robots and systems (IROS2012), pp 926–931

    Google Scholar 

  • Ikuta K, Ichikawa H, Suzuki K, Yamamoto T (2003) Safety active catheter with multi-segments driven by innovative hydro-pressure micro actuators. In: The 16th IEEE international conference on micro electro-mechanical systems (MEMS), pp 130–135. https://doi.org/10.1109/MEMSYS.2003.1189704

  • Inoue T, Hirai S (2009) Mechanics and control of soft-fingered manipulation. Springer. ISBN 978-1-84800-980-6. https://doi.org/10.1007/978-1-84800-981-3

  • Isaka K et al (2019) Development of underwater drilling robot based on earthworm locomotion. IEEE Access

    Google Scholar 

  • Ito F et al (2019) Proposal of a peristaltic motion type duct cleaning robot for traveling in a flexible pipe. In: IEEE/RSJ international conference intelligent robot and systems (IROS2019), pp 6614–6621

    Google Scholar 

  • Jones HD et al (1970) Locomotion of the Limpet, Patella Vulgata L. J Exp Biol 52:201–216

    Article  Google Scholar 

  • Jones BA, Walker ID (2006) Kinematics for multisection continuum robots. IEEE Trans Robot 22(1):43–55. https://doi.org/10.1109/TRO.2005.861458

  • Koizumi S, Nakata T, Liu H (2021) Flexibility effects of a flap** mechanism inspired by insect musculoskeletal system on flight performance. Front Bioeng Biotechnol 9:612183

    Article  Google Scholar 

  • Kolomenskiy D, Ravi S, Xu R, Ueyama K, Jakobi T, Engels T, Nakata T, Sesterhenn J, Schneider K, Onishi R, Liu H (2019) The dynamics of passive feathering rotation in hovering flight of bumblebees. J Fluids Struct 91:102628

    Article  Google Scholar 

  • Kwon SR, Lee DY, Jeong U, Park YJ, Cho KJ (2018) Development of efficiency enhanced scotch yoke mechanism for robotic fish. Int J Precision Eng Manuf 19(10):1507–1513

    Google Scholar 

  • Lam TL et al (2011) A flexible tree climbing robot: treebot—design and implementation. In: 2011 IEEE international conference on robotics and automation. https://doi.org/10.1109/ICRA.2011.5979833

  • Li G, Chen X, Zhou F, Liang Y, **ao Y, Cao X, Zhang Z, Zhang M, Wu B, Yin S, Xu Y, Fan H, Chen Z, Song W, Yang W, Pan B, Hou J, Zou W, He S, Yang X, Mao G, Jia Z, Zhou H, Li T, QUu S, Xu Z, Huang Z, Luo Y, **e T, Gu J, Zhu S andYang W (2021) Self-powered soft robot in the Mariana Trench. Nature 591(7848):66–71

    Google Scholar 

  • Lin H et al (2011) GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir Biomim 6(2):026007. https://doi.org/10.1088/1748-3182/6/2/026007

    Article  Google Scholar 

  • Lin HT (2011) Biomechanical strategies for locomotion in soft-bodied animals. PhD Thesis, Tufts University. https://dl.tufts.edu/concern/pdfs/p8419067q

  • Lindsey CC (1978) Form, function, and locomotory habits in fish. In: Fish physiology. Academic Press, Massachusetts, USA, pp 1–100

    Google Scholar 

  • Maeda M, Nakata T, Kitamura I, Tanaka H, Liu H (2017) Quantifying the dynamic wing morphing of hovering hummingbird. Roy Soc Open Sci 4:170307.

    Google Scholar 

  • Mahl T, Hildebrandt A, Sawodny O (2014) A variable curvature continuum kinematics for kinematic control of the bionic handling assistant. IEEE Trans Robot 30(4):935–949. https://doi.org/10.1109/TRO.2014.2314777

    Article  Google Scholar 

  • Mangan EV et al (2002) Development of a peristaltic endoscope. In: Proceedings of IEEE international conference on robotics and automation, pp 347–352

    Google Scholar 

  • Menciassi et al (2004) A SMA actuated artificial earthworm. In: Proceedings of IEEE international conference on robotics and automation, pp 347–352

    Google Scholar 

  • Morishima M, Umedachi T, Kawahara Y (2020) Caterpillar-inspired soft robot that locomotes upside-down by utilizing environmental skeleton. Eng Res Expr 2:035022

    Article  Google Scholar 

  • Nakamura T et al (2005) Development of a peristaltic crawling robot based on earthworm locomotion. J Rob Mechatron 18(3):299–304

    Article  Google Scholar 

  • Omori H et al (2012) Development of a novel bio-inspired planetary subsurface explorer: Initial experimental study by prototype excavator with propulsion and excavation units. IEEE/ASME Trans Mechatron 18(2):459–470

    Article  Google Scholar 

  • Peng L, Kai H, **efeng O, Ruxu D (2011) Mechanical design, kinematic modeling and simulation of a robotic dolphin. In: Proceedings of IEEE international conference on information and automation, pp 738–743

    Google Scholar 

  • Quillin KJ (1999) Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm lumbricus terrestris. J Exp Biol 202(6):661–674

    Article  Google Scholar 

  • Quillin KJ (1998) Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris. J Exp Biol 21;201(12):1871–83

    Google Scholar 

  • Rozen-Levy S et al (2019) The design and development of Branch Bot: a branch-crawling, caterpillar-inspired, soft robot. Int J Res Rev. https://doi.org/10.1177/0278364919846358

  • Sadeghi A, Mondini A, Mazzolai B (2017) Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot 4(3):211–223. https://doi.org/10.1089/soro.2016.0080

    Article  Google Scholar 

  • Saga N et al (2004) A prototype of peristaltic robot using pneumatic artificial muscle. Intell Auton Syst 8(1):85–95

    Google Scholar 

  • Saga N et al (2002a) Development of peristaltic crawling robot using magnetic fluid on the basis of locomotion mechanism of earthworm. In: Proceedings of SPIE, smart structures, devices, and systems, pp 369–377

    Google Scholar 

  • Saga N et al (2002b) Elucidation of Propulsive force of micro-robot using magnetic fluid. J Appl Phys 91(10–2,3):7003–7005

    Google Scholar 

  • Saga N et al (2003) Study on peristaltic crawling robot using artificial muscle actuator. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM2003), pp 679–684

    Google Scholar 

  • Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208

    Article  Google Scholar 

  • Seok S et al (2010) Peristaltic locomotion with antagonistic actuators in soft robotics. In: Proceedings of IEEE international conference robotics and automation (ICRA2010), pp 1228–1233

    Google Scholar 

  • Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. J Oceanic Eng 24(2):237–252

    Article  Google Scholar 

  • Shintake J, Cacucciolo V, Floreano D, Shea H (2018) Soft robotic grippers. Adv Mater 30(29)

    Google Scholar 

  • Shyy W, Lian Y, Tang J, Viiery D, Liu H (2011) Aerodynamics of low reynolds number flyers. Cambridge University Press, UK

    Google Scholar 

  • Sugi H (1977) Evolution of muscle motion. The University of Tokyo Press, Tokyo

    Google Scholar 

  • Suzumori K, Iikura S, Tanaka H (1991) Flexible microactuator for miniature robots. IEEE Micro Electro Mech Syst 1991:204–209. https://doi.org/10.1109/MEMSYS.1991.114797

    Article  Google Scholar 

  • Takeichi M, Suzumori K, Endo G, Nabae H (2017) Development of a 20-m-long Giacometti arm with balloon body based on kinematic model with air resistance. In: IEEE international conference on intelligent robots and systems (IROS), pp 2710–2716. https://doi.org/10.1109/IROS.2017.8206097

  • Tanaka Y et al (2011a) Mechanics of peristaltic locomotion and role of anchoring. J Roy Soc Interface 9(67):222–233

    Article  Google Scholar 

  • Tanaka H, Whitney JP, Wood RJ (2011b) Effect of flexural and torsional wing flexibility on lift generation in hoverfly flight. Integr Comp Biol 51:142–150

    Article  Google Scholar 

  • Tang Y et al. (2018) Switchable Adhesion Actuator for Amphibious Climbing Soft Robot. Soft Robotics 5(5)

    Google Scholar 

  • Taylor GK, Nudds RL, Thomas ALR (2003) Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425(6959):707–711

    Article  Google Scholar 

  • Thandiackal R, White CH, Bart-Smith H, Lauder GV (2021) Tuna robotics: hydrodynamics of rapid linear accelerations. Proc Roy Soc B: Biol Sci 288(1945):20202726

    Article  Google Scholar 

  • Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117

    Google Scholar 

  • Umedachi T et al (2019) Caterpillar-inspired crawling robot using both compression and bending deformations. IEEE Rob Autom Lett. https://doi.org/10.1109/LRA.2019.2893438

    Article  Google Scholar 

  • Umedachi T et al (2013) Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2013), WeAT11.5

    Google Scholar 

  • van Griethuijsen LI et al (2014) Locomotion in caterpillars. Biol Rev 89(656–670):656. https://doi.org/10.1111/brv.12073

    Article  Google Scholar 

  • Wang Z, Furuta H, Hirai S, Kawamura S (2021) A scoo**-binding robotic gripper for handling various food products. Front Robot AI. https://doi.org/10.3389/frobt.2021.640805

  • Wang Z, Hirai S, Kawamura S (2022) Challenges and opportunities in robotic food handling: a review. Front Robot AI Algorithms Technol Towards Robot Food Manipulation. https://doi.org/10.3389/frobt.2021.789107

  • White CH, Lauder GV, Bart-Smith H (2021) Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming. Bioinspiration Biomimetics 16(2):026019

    Google Scholar 

  • Whitney J, Wood RJ (2010) Aeromechanics of passive rotation in flap** flight. J Fluid Mech 660:197–220

    Google Scholar 

  • Yamashita A et al (2011) Self-localization and 3-D model construction of pipe by earthworm robot equipped with omni-directional rangefinder. In: Proceedings of IEEE international conference on robotics and biomimetics, pp 1017–1023

    Google Scholar 

  • Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552

    Article  Google Scholar 

  • Yu J, Hu Y, Huo J, Wang L (2009) Dolphin-like propulsive mechanism based on an adjustable Scotch yoke. Mech Mach Theory 44(3):603–614

    Article  MATH  Google Scholar 

  • Zou J et al (2005) A micro cree** robot for colonoscopy based on the earthworm. J Medical Eng Tech 29(1):1–7

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuma Niiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirai, S., Niiyama, R., Nakamura, T., Umedachi, T., Nakata, T., Tanaka, H. (2023). Soft Manipulation and Locomotion. In: Suzumori, K., Fukuda, K., Niiyama, R., Nakajima, K. (eds) The Science of Soft Robots. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-19-5174-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5174-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5173-2

  • Online ISBN: 978-981-19-5174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation