Biological Mechanisms

  • Chapter
  • First Online:
The Science of Soft Robots

Part of the book series: Natural Computing Series ((NCS))

  • 681 Accesses

Abstract

Collaboration between biology and robotics has been an important trend since before the establishment of modern soft robotics. The chapter began with a discussion of the possibilities of using robots for biological experiments, rather than solely one-way use of biological expertise by robot researchers. We then provide an overview of the musculoskeletal system as the body structure of an organism that combines hardness and softness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Campos-Dávila L, Pérez-Estrada CJ, Rodríguez-Estrella R, Morales-Bojórquez E, Brun-Murillo FG, Balart EF (2019) Seagrass Halodule wrightii as a new habitat for the amphioxus Branchiostoma californiense (Cephalochordata, Branchiostomidae) in the southern Gulf of California, Mexico. ZooKeys 873:113–131

    Article  Google Scholar 

  • Colbert EH, Morales M, Minkoff EC (2001) Colbert’s evolution of the vertebrates: a history of the backboned animals through time. Wiley-Liss, New York

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(23):332532

    Article  Google Scholar 

  • Garamszegi LZ (ed) (2014) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Berlin Heidelberg

    Google Scholar 

  • Givnish TJ (2015) Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol 207(2):297–303

    Article  Google Scholar 

  • Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton

    Google Scholar 

  • Gravish N, Lauder GV (2018) Robotics-inspired biology. J Exp Biol 221(7)

    Google Scholar 

  • Griffiths Z, Page J (2022) Biomimicry or bio-inspired design? https://www.animal-dynamics.com/ad-blog/2019/4/10/biomimicry-versus-bio-inspired-design. Accessed 18 Jan 2022

  • Hasegawa M (2018) Sexual selection mechanisms for male plumage ornaments in Japanese Barn Swallows. Ornithol Sci 17(2):125–134

    Article  Google Scholar 

  • Hasegawa N, Kajihara H (2019) A redescription of Syncarpa composita (Ascidiacea, Stolidobranchia) with an inference of its phylogenetic position within Styelidae. ZooKeys 857:1–15

    Article  Google Scholar 

  • Hildebrand M, Goslow GE (2001) Analysis of vertebrate structure. Wiley, New York

    Google Scholar 

  • Iida F, Ijspeert AJ (2016) Biologically inspired robotics. In: Siciliano B, Khatib O (eds) Springer Handbook of Robotics. Springer International Publishing, Cham

    Google Scholar 

  • Ijspeert AJ (2014) Biorobotics: using robots to emulate and investigate agile locomotion. Science 346(6206):196–203

    Article  Google Scholar 

  • Karakasiliotis K, Thandiackal R, Melo K, Horvat T, Mahabadi NK, Tsitkov S, Cabelguen JM, Ijspeert AJ (2016) From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion. J R Soc Interface 13(119):20151089

    Article  Google Scholar 

  • Kent GC, Carr RK (2001) Comparative anatomy of the vertebrates. McGraw Hill, New York

    Google Scholar 

  • Liem KF, Benis WE, Walker WF, Grande L (2001) Functional anatomy of the vertebrates: an evolutionary perspective. Harcourt College Publishers, Fort Worth

    Google Scholar 

  • Long JH Jr (2012) Darwin’s devices: what evolving robots can teach us about the history of life and the future of technology. Basic Books, New York

    Google Scholar 

  • Long JH Jr, Nipper KS (1996) The importance of body stiffness in undulatory propulsion. Am Zool 36(6):678–694

    Article  Google Scholar 

  • McInroe B, Astley HC, Gong C, Kawano SM, Schiebel PE, Rieser JM et al (2016) Tail use improves performance on soft substrates in models of early vertebrate land locomotors. Science 353(6295):154–158

    Article  Google Scholar 

  • Møller AP (1988) Female choice selects for male sexual tail ornaments in the monogamous swallow. Nature 332(6165):640–642

    Article  Google Scholar 

  • Nakata T, Phillips N, Simões P, Russell IJ, Cheney JA, Walker SM, Bomphrey RJ (2020) Aerodynamic imaging by mosquitoes inspires a surface detector for autonomous flying vehicles. Science 368(6491):634–637

    Article  Google Scholar 

  • Nolfi S, Bongard J, Husbands P, Floreano D (2016) Evolutionary robotics. In: Siciliano B, Khatib O (eds) Springer Handbook of Robotics. Springer International Publishing, Cham

    Google Scholar 

  • Nyakatura JA, Melo K, Horvat T, Karakasiliotis K, Allen VR, Andikfar A, Andrada E, Arnold P, Lauströer J, Hutchinson JR, Fischer MS, Ijspeert AJ (2019) Reverse-engineering the locomotion of a stem amniote. Nature 565(7739):351–355

    Article  Google Scholar 

  • Ota KG, Fujimoto S, Oisi Y, Kuratani S (2011) Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nat Commun 2(1):373

    Article  Google Scholar 

  • Roberts SF, Hirokawa J, Rosenblum HG, Sakhtah H, Gutierrez AA, Porter ME, Long JH (2014) Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates. Front Rob AI 1

    Google Scholar 

  • Sacks RD, Roy RR (1982) Architecture of the hind limb muscles of cats: functional significance. J Morphol 173:185–195

    Article  Google Scholar 

  • Satoh N, Rokhsar D, Nishikawa T (2014) Chordate evolution and the three-phylum system. Proc Roy Soc b: Biol Sci 281(1794):20141729

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Tamborini M (2021) The material turn in the study of form: from bio-inspired robots to robotics-inspired morphology. Perspect Sci 29(5):643–665

    Article  Google Scholar 

  • Tanaka H, Nakata T, Yamasaki T (2022) Biomimetic soft wings for soft robot science. J Robot Mechatron 34(2):223–226

    Article  Google Scholar 

  • Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446

    Article  Google Scholar 

  • Webb B (2002) Robots in invertebrate neuroscience. Nature 417(6886):359–363

    Article  Google Scholar 

  • Yamada Y, Nishikawa S, Shida K et al (2011) Neural body coupling for emergent locomotion: a musculoskeletal quadruped robot with spinobulbar model. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1499–1506

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megu Gunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamasaki, T., Gunji, M., Masuda, Y., Fukuhara, A. (2023). Biological Mechanisms. In: Suzumori, K., Fukuda, K., Niiyama, R., Nakajima, K. (eds) The Science of Soft Robots. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-19-5174-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5174-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5173-2

  • Online ISBN: 978-981-19-5174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation