Siderophore Production in Iron Uptake and Plant Biofortification

  • Chapter
  • First Online:
Plant Microbiome for Plant Productivity and Sustainable Agriculture

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 37))

  • 631 Accesses

Abstract

Although iron (Fe) is present abundantly on the earth, its bioavailability to plants is low and is dependent on the soil’s redox potential and soil pH. In aerobic or alkaline soil, Fe is readily oxidized and usually forms insoluble complexes as ferric oxides which make it unavailable for plant uptake. Beneficial microorganisms, such as mycorrhiza and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria, have several functions and can increase mineral Fe uptake. They have also been considered to have long-term efficiency once they are used in the field. Under iron-limited surroundings, some iron chelating bacteria produce iron chelating molecules siderophores to increase iron uptake as well as transport it to their host plants. This chapter covers and describes the role of siderophore in iron uptake and biofortification in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Abbaszadeh-Dahaji P, Omidvari M, Ghorbanpour M (2016) Increasing phytoremediation efficiency of heavy metal-contaminated soil using PGPR for sustainable agriculture. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 187–204

    Chapter  Google Scholar 

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth-promoting rhizobacteria on improved crop production: prospects for develo** economies. In: Maheshwari D, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 45–63

    Chapter  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth-promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Anke H, Kinn J, Bergquist KE, Sterner O (1991) Production of siderophores by strains of the genus Trichoderma. Biol Met 4(3):176–180

    Article  CAS  Google Scholar 

  • Arceneaux JE, Byers BR (1980) Ferrisiderophore reductase activity in Bacillus megaterium. J Bact 141:715–721

    Article  CAS  Google Scholar 

  • Bartholdy B, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals 14:33–42

    Article  CAS  Google Scholar 

  • Baysse C, Matthijs S, Pattery T, Cornelis P (2001) Impact of mutations in hemA and hemH genes on pyoverdine production by Pseudomonas fluorescens ATCC17400. FEMS Micro Lett 205(1):57–63

    Article  CAS  Google Scholar 

  • Benoist BD, McLean E, Andersson M, Rogers L (2008) Iodine deficiency in 2007: global progress since 2003. Food Nutr Bull 29(3):195–202

    Article  Google Scholar 

  • Bersamin A (2008) Nutrition and health info sheet: iron and iron deficiency anemia. UCANR Publications, pp 1–6

    Book  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15(4):325–339

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Carvalho SM, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54(1):961–971

    Article  CAS  Google Scholar 

  • Chhabra S, Hogan J, Ryan D, Burke J, Brazil D, Dowling D (2010) Analysis of microbial communities under long-term conventional and reduced-input management of tillage soil. In: Vilas AM (ed) Microorganisms in industry and environment, from scientific and industrial research to consumer products. World Scientific Publications, Singapore, pp 8–11. https://doi.org/10.1142/9789814322119_0002. ISBN: 978-981-4322-10-2

    Chapter  Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke J, O’Gara F, Dowling DN (2013) Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol Fert Soils 49:31–39. https://doi.org/10.1007/s00374-012-0693-2

    Article  CAS  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores, vol 12. Springer-Verlag, Berlin, pp 1–42

    Chapter  Google Scholar 

  • de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342(1–2):97–104

    Article  CAS  Google Scholar 

  • Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Bacteria in agrobiology: plant nutrient management. Springer, New York, pp 109–139

    Chapter  Google Scholar 

  • Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi K-M, Lee J-H, Oh BT (2017) Potential for plant biocontrol activity of isolated Pseudomonas aeruginosa and Bacillus stratosphericus strains against bacterial pathogens acting through both induced plant resistance and direct antagonism. FEMS Micro Lett 364(23):fnx225

    Article  Google Scholar 

  • Ferreira CM, Soares HM, Soares EV (2019) Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Env 682:779–799

    Article  CAS  Google Scholar 

  • Ganz T (2018) Iron and infection. Int J Hematol 107(1):7–15. https://doi.org/10.1007/s12185-017-2366-2

    Article  CAS  Google Scholar 

  • García-Garrido JM, García-Romera I, Ocampo JA (1992) Cellulase production by the vesicular–arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. New Phytol 121(2):221–226

    Article  Google Scholar 

  • Garcia-Casal MN, Peña-Rosas JP, Pachón H, De-Regil LM, Tablante EC, Flores-Urrutia MC (2016) Staple crops biofortified with increased micronutrient content: effects on vitamin and mineral status, as well as health and cognitive function in the general population. Cochrane Database Syst Rev 8

    Google Scholar 

  • Glick BR, Holguin G, Patten CL, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gosal S, Karlupia A, Gosal S, Chhibba I, Varma A (2010) Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  Google Scholar 

  • Greenfield M, Gómez-Jiménez MI, Ortiz V, Vega FE, Kramer M, Parsa S (2016) Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control 95:40–48

    Article  Google Scholar 

  • Grusak MA (2002) Enhancing mineral content in plant food products. J Am Coll Nutr 21(suppl 3):178S–183S

    Article  Google Scholar 

  • Guo W, Zhao R, Yang H, Zhao J, Zhang J (2013) Using native plants to evaluate the effect of arbuscular mycorrhizal fungi on revegetation of iron tailings in grasslands. Biol Fert Soils 49(6):617–626

    Article  CAS  Google Scholar 

  • Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals 15:73–77

    Article  CAS  Google Scholar 

  • Haselwandter K, Passler V, Reiter S, Schmid DG, Nicholson G, Hentschel P et al (2006) Basidiochrome—a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia spp. Biometals 19(3):335–343

    Article  CAS  Google Scholar 

  • Haselwandter K, Haninger G, Ganzera M (2011) Hydroxamate siderophores of the ectomycorrhizal fungi Suillus granulatus and S. luteus. Biometals 24:153–157

    Article  CAS  Google Scholar 

  • Hayat R, Ahmed I, Sheirdil RA (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Crop production for agricultural improvement. Springer, New York, pp 557–579

    Chapter  Google Scholar 

  • Hindu V, Palacios-Rojas N, Babu R, Suwarno WB, Rashid Z, Usha R, Saykhedkar GR, Nair SK (2018) Identification and validation of genomic regions influencing kernel zinc and iron in maize. Theor Appl Genet 131:1443–1457

    Article  CAS  Google Scholar 

  • Hofte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer-Verlag, Berlin, pp 121–133

    Chapter  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2003) The scourge of “hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Khalid S, Asghar HN, Akhtar MJ, Aslam A, Zahir ZA (2015) Biofortification of iron in chickpea by plant growth-promoting rhizobacteria. Pak J Bot 47:1191–1194

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Khan A, Singh J, Upadhayay VK, Singh AV, Shah S (2019) Microbial biofortification: a green technology through plant growth promoting microorganisms. In: Sustainable green technologies for environmental management. Springer, Singapore, pp 255–269

    Chapter  Google Scholar 

  • Khush G (2003) Productivity improvements in rice. Nut Rev 61(6 Pt 2):S114–S116. https://doi.org/10.1301/nr.2003.jun.S114

    Article  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  Google Scholar 

  • Kumar S, Hash C, Nepolean T, Mahendrakar M, Satyavathi C, Singh G, Rathore A, Yadav R, Gupta R, Srivastava R (2018) Map** grain iron and zinc content quantitative trait loci in an Iniadi-derived immortal population of pearl millet. Genes 9(5):24

    Article  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. PNAS 99(10):7072–7077

    Article  CAS  Google Scholar 

  • Lehoux DE, Sanschagrin F, Levesque RC (2000) Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Micro Lett 190(1):141–146

    Article  CAS  Google Scholar 

  • Li W, Lyte M, Freestone PP, Ajmal A, Colmer-Hamood JA, Hamood AN (2009) Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Micro Lett 299(1):100–109

    Article  CAS  Google Scholar 

  • Liu QQ, Yao QH, Wang HM, Gu MH (2004) Endosperm-specific expression of the ferritin gene in transgenic rice (Oryza sativa L.) results in increased iron content of milling rice. Yi Chuan Xue Bao 31:518–524

    CAS  Google Scholar 

  • Liu C, Ye Y, Liu J, Pu Y, Wu C (2021) Iron biofortification of crop food by symbiosis with beneficial microorganisms. J Plant Nut 44(18):2793–2810

    Article  CAS  Google Scholar 

  • Lucca P, Hurrel R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 3:184S–190S

    Article  Google Scholar 

  • Luo W, Li J, Ma X, Niu H, Hou S, Wu F (2019) Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 438(1):71–83

    Article  CAS  Google Scholar 

  • May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276(10):7209–7217

    Article  CAS  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Cur Opin Plant Biol 11(2):166–170

    Article  CAS  Google Scholar 

  • McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005. Public Health Nutr 12:444–454

    Article  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Article  CAS  Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremediation 18(7):697–703

    Article  CAS  Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared-root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agri Eco Env 103(1):245–249

    Article  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2(3):250–253

    Article  CAS  Google Scholar 

  • Mucha J, Gabała E, Zadworny M (2019) The effects of structurally different siderophores on the organelles of Pinus sylvestris root cells. Planta 249:1747–1760

    Article  CAS  Google Scholar 

  • Mukherjee PK, Hurley JF, Taylo JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophy Res Comm 505(2):606–661

    Article  CAS  Google Scholar 

  • Murgia I, Arosio P, Tarantino D, Soave C (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17(1):47–55

    Article  CAS  Google Scholar 

  • Nair KM, Iyengar V (2009) Iron content, bioavailability and factors affecting iron status of Indians. Ind J Med Res 130(5):634–645

    CAS  Google Scholar 

  • Pahari A, Pradhan A, Nayak SK, Mishra BB (2017) Bacterial siderophore as a plant growth promoter. In: Patra J, Vishnuprasad C, Das G (eds) Micro Biotech. Springer, Singapore, pp 163–180

    Chapter  Google Scholar 

  • Patel P, Bhatt S, Patel H, Saraf M (2020) Iron chelating bacteria: a carrier for biofortification and plant growth promotion. J Biol Studies 3(3):111–120

    Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51(4):403–415

    Article  CAS  Google Scholar 

  • Prabhu V, Biolchini PF, Boyer GL (1996) Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. Biometals 9(3):229–234

    Article  CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, pp 247–260

    Chapter  Google Scholar 

  • Prasad B, Kumar A, Singh AV, Kumar A (2016) Plant growth and seed yield attributes as influenced by bacterial isolates under glass house. Prog Res 11(IV):2573–2576

    Google Scholar 

  • Prasanna R, Nain L, Rana A, Shivay YS (2016) Biofortification with microorganisms: present status and future challenges. In: Singh U, Praharaj C, Singh S, Singh N (eds) Biofortification of food crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2716-8_19

    Chapter  Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54:373–385. https://doi.org/10.1023/B:PLAN.0000036370.70912.34

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved grand wheat cultivated in Vertisols of Central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012a) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012b) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58(5):573–582

    Article  CAS  Google Scholar 

  • Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crop Res 60:27–40

    Article  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80(1):175–180

    Article  Google Scholar 

  • Rossbach S, Wilson TL, Kukuk ML, Carty HA (2000) Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Micro Lett 191(1):61–70

    Article  CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  Google Scholar 

  • Segarra G, Casanova E, Aviles M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Micro Eco 59:141–149

    Article  Google Scholar 

  • Shah S, Ramanan VV, Singh AV, Singh AK (2018) Potential and prospect of plant growth promoting rhizobacteria in lentil. In: Singh AK et al. (eds) Scientific lentil production. Satish Serial Publishing House, Delhi

    Google Scholar 

  • Shaikh S, Saraf M (2017) Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocat Agri Biotech 9:120–126. https://doi.org/10.1016/j.bcab.2016.12.008

    Article  Google Scholar 

  • Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359. https://doi.org/10.4014/jmb.1106.05063

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant Soil Environ 59(2):89–94

    Article  CAS  Google Scholar 

  • Sheftela AD, Mason AB, Ponka P (2011) The long history of iron in the universe and in health and disease. Biochim Biophys Acta Gen Subj 1820(3):161–187

    Article  Google Scholar 

  • Singh AV, Goel R (2015) Plant growth promoting efficiency of Chryseobacterium sp. PSR10 on finger millet (Eleusine coracana). J Global Biosci 4(6):2569–2575

    Google Scholar 

  • Singh AV, Chandra R, Reeta G (2013) Phosphate solubilization by Chryseobacterium sp. and their combined effect with N and P fertilizers on plant growth promotion. Arch Agro Soil Sci 59(5):641–651

    Article  CAS  Google Scholar 

  • Singh AV, Prasad B (2014) Enhancement of plant growth, nodulation and seed yield through plant growth promoting Rhizobacteria in lentil (Lens culinaris Medik cv. VL125). Int J Curr Microbiol Appl Sci 3(6):614–622

    Google Scholar 

  • Singh D, Prasanna R (2020) Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agr Sustain Dev 40:15

    Article  CAS  Google Scholar 

  • Singh J, Singh AV (2017) Microbial strategies for enhanced phytoremediation of heavy metals contaminated soils. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. Taylor & Francis, London, pp 249–264

    Google Scholar 

  • Singh AV, Agarwal A, Goel R (2010a) Comparative phosphate solubilization efficiency of two bacterial isolates and their effect on Cicer arietinum seeds in indigenous and alternative soil system. Environ Ecol 28:1979–1983

    Google Scholar 

  • Singh AV, Prasad B, Shah S (2010b) Screening plant growth promotory rhizobacteria for improving seed germination and seedling vigor of lentil (Lens culinaris Medik). Environ Ecol 28:2055–2058

    Google Scholar 

  • Singh AV, Shah S, Prasad B (2010c) Effect of phosphate solubilizing bacteria on plant growth promotion and nodulation in soybean (Glycine max (L.) Merr). J Hill Agri 1(1):35–39

    CAS  Google Scholar 

  • Singh AV, Prasad B, Shah S (2011) Influence of phosphate solubilizing bacteria for enhancement of plant growth and seed yield in lentil. J Crop Weed 7(1):1–4

    Google Scholar 

  • Singh J, Singh AV, Prasad B, Shah S (2017a) Sustainable agriculture strategies of wheat biofortification through microorganisms. In: Kumar A, Kumar A, Prasad B (eds) Wheat a premier food crop. Kalyani Publishers, New Delhi

    Google Scholar 

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017b) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416(1–2):107–116

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Mahajan MM, Prasanna R, Singh S, Kaushik R, Singh RN, Kumar K, Saxena AK (2018a) Deciphering the mechanisms of endophyte-mediated biofortification of Fe and Zn in wheat. J Plant Growth Regul 37(1):174–182

    Article  CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Kar A, Singh AM, Saxena AK (2018b) Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Ann Microbiol 68(12):815–833

    Article  CAS  Google Scholar 

  • Singh AV, Prasad B, Goel R (2018c) Plant growth promoting efficiency of phosphate solubilizing Chryseobacterium sp. PSR 10 with different doses of N and P fertilizers on lentil (Lens culinaris var. PL-5) growth and yield. Int J Curr Microbiol App Sci 7(05):2280–2289

    Article  Google Scholar 

  • Sut M, Boldt-Burisch K, Raab T (2016) Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes. Ecotoxicology 25:1260–1269

    Article  CAS  Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48(1):85–97

    Article  CAS  Google Scholar 

  • Temirov YV, Esikova TZ, Kashparov IA, Balashova TA, Vinokurov LM, Alakhov YB (2003) A catecholic siderophore produced by the thermoresistant Bacillus licheniformis VK21 strain. Rus J Bio Chem 29(6):542–549

    Article  CAS  Google Scholar 

  • Tian X, Lu X, Mai W, Yang X, Li S (2008) Effect of calcium carbonate content on availability of zinc in soil and zinc and iron uptake by wheat plants. Soil 40(3):425–431

    CAS  Google Scholar 

  • Treeby MT (1992) The role of mycorrhizal fungi and non-mycorrhizal micro-organisms in iron nutrition of citrus. Soil Biol Biochem 24(9):857–864

    Article  CAS  Google Scholar 

  • Upadhayay VK, Singh AV, Pareek N (2018) An insight in decoding the multifarious and splendid role of microorganisms in crop biofortification. Int J Curr Microbiol App Sci 7(06):2407–2418

    Article  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:71–378

    Article  Google Scholar 

  • Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C (2016) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129(8):1595–1605

    Article  CAS  Google Scholar 

  • Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347(2):123–129

    CAS  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine synthesis and its regulation in fluorescent Pseudomonads. In: Varma A, Chincholkar SB (eds) Microbial siderophores. Springer-Verlag, Berlin, pp 135–163

    Chapter  Google Scholar 

  • Watteau F, Berthelin J (1994) Mineral dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur J Soil Biol 30:1–9

    CAS  Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field related experiment. Microbial Biotech 6:288–299

    Article  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortiication of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • Woo S-M, Kim S-D (2008) Structural identification of siderophore (AH18) from Bacillus subtilis AH18, a biocontrol agent of Phytophthora blight disease in red-pepper. Korean J Microbiol 36(4):326–335

    CAS  Google Scholar 

  • World Health Organization (2002) The world health report 2002—reducing risks, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

  • Yao T, Yasmin S, Malik KA, Hafeez FY (2008) Potential role of Rhizobacteria isolated from Northwestern China for enhancing wheat and oat yield. J Agri Sci 146(01):49–56. https://doi.org/10.1017/S0021859607007356

    Article  CAS  Google Scholar 

  • Yip R (2002) Prevention and control of iron deficiency: policy and strategy issues. J Nutr 132(4):802–805

    Article  Google Scholar 

  • Yu X, Ai C, **n L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Zaidi A, Khan MS, Amil MD (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19(1):15–21

    Article  Google Scholar 

  • Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N. (2023). Siderophore Production in Iron Uptake and Plant Biofortification. In: Chhabra, S., Prasad, R., Maddela, N.R., Tuteja, N. (eds) Plant Microbiome for Plant Productivity and Sustainable Agriculture . Microorganisms for Sustainability, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-19-5029-2_13

Download citation

Publish with us

Policies and ethics

Navigation